NMDA receptor gene variations as modifiers in Huntington disease: a replication study

July 11, 2011 · Genetics
Carsten Saft, Jorgtepplen, Stefan Wieczorek, G. Bernhard Landwehrmeyer, Raymund A.C. Roos, Justo Garcia de Yebenes, Matthias Dose, Sarah Tabrizi, David Craufurd, the REGISTRY investigators of the European Huntington's Disease Network
Larissa Arning

Abstract
Several candidate modifier genes which, in addition to the pathogenic CAG repeat expansion, influence the age at onset (AO) in Huntington disease (HD) have already been described. The aim of this study was to replicate association of variations in the N-methyl D-aspartate receptor subtype genes GRIN2A and GRIN2B in the "REGISTRY" cohort from the European Huntington Disease Network (EHDN). The analyses did replicate the association reported between the GRIN2A rs2650427 variation and AO in the entire cohort. Yet, when subjects were stratified by AO subtypes, we found nominally significant evidence for an association of the GRIN2A rs1969060 variation and the GRIN2B rs1806201 variation. These findings further implicate the N-methyl D-aspartate receptor subtype genes as loci containing variation associated with AO in HD.

Introduction
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder characterised by motor disturbances, cognitive decline, and neuropsychiatric symptoms. It is caused by a CAG repeat expansion (>36 repeats) in exon 1 of the HTT gene. [1] The lengths of the expanded CAG tract is inversely related to the age at clinical onset of HD, accounting for more than half of the overall variance in age at onset (AO). [2] Despite this strong correlation, there remains considerable variation of over 40 years in AO in individuals with identical repeat lengths. Several candidate modifier genes of HD have already been described in independent studies. [3] [4] [5] [6] [7] [8] [9] In order to confirm the associations between modifier gene variations and AO, independent replication studies are compulsory. Here, we tested the primary hypothesis of an original study[4], that variations in the NR2A and NR2B glutamate receptor subunit genes (GRIN2A, GRIN2B) explain additional variance in AO for HD.

Methods
The study cohort comprised 1,211 individuals of European ancestry with HD collected by the EHDN "REGISTRY" study prior to October 14, 2008. "REGISTRY" is a multi-centre, multi-national observational study which aims to obtain natural history data on a wide spectrum of the European HD population (http://www.euro-hd.net/html/registry).[10] In order to test previously reported HD genetic modifiers in this cohort, HD patients with available data on age, sex, age at symptom onset, mutant CAG repeat size and body mass index (BMI) were included (initial n = 1211; n = 1069; 529 men and 540 women had a complete data set).

The expanded trinucleotide repeats ranged from 40 to 89 with a mean (± SD) of 45±4.7 CAGs, and AO ranged from 6 to 74 years, with an onset (mean ± SD) of 42 ±11.8 years. AO was defined as the age at which, according to the rater, the first signs of HD appeared. Five hundred and thirty-eight patients first presented with motor disturbances (mean ± SD motor AO = 43.4±11.6 years), 241 with psychiatric problems (mean ± SD psychiatric AO = 39.9±10.8 years), and 112 with cognitive decline (mean ± SD cognitive AO = 38.6±13.1 years). For the remaining patients no specific symptoms were listed (mean ± SD AO = 42.1±11.8 years). Genotyping of three SNPs was conducted as described before.[4]

Results
None of the SNPs deviated from Hardy – Weinberg Equilibrium (HWE). Considering the earliest AO (n = 1,069), we did find evidence of association of the GRIN2A SNP rs2650427 (table 1). The R² statistic rose modestly (from 0.634 to 0.635) but significantly (p=0.028) when GRIN2A genotypes were added to the regression model. The analysis did not, however, replicate the association reported between the SNP rs1969060 in intron 2 of the GRIN2A gene and SNP C2664T (rs1806201) in exon 12 of the GRIN2B gene (table 1); but when dividing the cohort according to the nature of the symptoms presented initially, both the GRIN2B C2664T and the GRIN2A rs1969060 polymorphisms explained a small but considerable amount of additional variance.
in residual AO in the respective samples. Inclusion of the GRIN2B genotypes in the model for motor AO (n = 538) increased the R² statistic from 0.620 to 0.623 (p = 0.046) and in the study of 241 patients with psychiatric AO, the R² statistic of the exponential regression rose from 0.515 to 0.523 with the GRIN2A rs1969060 genotypes included (p = 0.026, table 1). Interestingly, the association of cognitive AO (n = 112) with the GRIN2A rs2650427 polymorphism shows the highest nominal significance as compared to the other models in the study (0.770 to 0.775, p = 0.014). Yet, the results remain statistically significant when excluding the patients with CAGs over >70 (n=4).

<table>
<thead>
<tr>
<th>Model</th>
<th>Genotypes</th>
<th>CAGmean ± SD</th>
<th>earliest AO mean ± SD</th>
<th>R²*</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD CAG 40-89 (n = 1069)</td>
<td>CC (n=560)</td>
<td>44.94±4.8</td>
<td>42.13±12.1</td>
<td>0.634</td>
<td><0.0005</td>
</tr>
<tr>
<td></td>
<td>CT (n=436)</td>
<td>45.02±4.5</td>
<td>41.32±11.3</td>
<td>0.634</td>
<td>0.199</td>
</tr>
<tr>
<td></td>
<td>TT (n=73)</td>
<td>44.86±4.6</td>
<td>43.14±11.9</td>
<td>0.634</td>
<td>0.196</td>
</tr>
<tr>
<td>+ GRIN2B C2664T (rs1806201)</td>
<td>additive</td>
<td></td>
<td></td>
<td>0.634</td>
<td>0.973</td>
</tr>
<tr>
<td></td>
<td>TT (n=745)</td>
<td>44.83±4.5</td>
<td>42.00±11.9</td>
<td>0.634</td>
<td>0.160</td>
</tr>
<tr>
<td></td>
<td>TC (n=292)</td>
<td>45.24±5.1</td>
<td>41.67±11.5</td>
<td>0.634</td>
<td>0.203</td>
</tr>
<tr>
<td></td>
<td>CC (n=32)</td>
<td>45.75±4.2</td>
<td>40.66±11.5</td>
<td>0.634</td>
<td>0.645</td>
</tr>
<tr>
<td>+ GRIN2A rs1969060</td>
<td>TT (n=183)</td>
<td>42.51±4.2</td>
<td>43.14±10.9</td>
<td>0.635</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>additive</td>
<td></td>
<td></td>
<td>0.635</td>
<td>0.028</td>
</tr>
<tr>
<td>HD CAG 40-77 (n = 538)</td>
<td>CC (n=274)</td>
<td>44.99±4.0</td>
<td>41.40±11.9</td>
<td>0.634</td>
<td>0.125</td>
</tr>
<tr>
<td></td>
<td>CT (n=221)</td>
<td>44.96±4.1</td>
<td>41.98±11.1</td>
<td>0.634</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>TT (n=43)</td>
<td>44.77±4.9</td>
<td>44.07±12.4</td>
<td>0.620</td>
<td>0.560</td>
</tr>
<tr>
<td>+ GRIN2B C2664T (rs1806201)</td>
<td>additive</td>
<td></td>
<td></td>
<td>0.621</td>
<td>0.296</td>
</tr>
<tr>
<td></td>
<td>TT (n=373)</td>
<td>44.51±3.6</td>
<td>43.79±11.5</td>
<td>0.620</td>
<td>0.824</td>
</tr>
<tr>
<td></td>
<td>TC (n=153)</td>
<td>45.32±4.9</td>
<td>42.19±11.9</td>
<td>0.620</td>
<td>0.934</td>
</tr>
<tr>
<td></td>
<td>CC (n=12)</td>
<td>43.75±2.5</td>
<td>46.25±9.5</td>
<td>0.620</td>
<td>0.658</td>
</tr>
<tr>
<td>+ GRIN2A rs1969060</td>
<td>additive</td>
<td></td>
<td></td>
<td>0.620</td>
<td>0.744</td>
</tr>
<tr>
<td></td>
<td>TT (n=181)</td>
<td>44.15±3.8</td>
<td>41.99±11.8</td>
<td>0.620</td>
<td>0.362</td>
</tr>
<tr>
<td></td>
<td>CT (n=259)</td>
<td>44.48±4.1</td>
<td>44.00±11.9</td>
<td>0.620</td>
<td>0.792</td>
</tr>
<tr>
<td></td>
<td>TT (n=98)</td>
<td>44.60±4.2</td>
<td>44.34±10.4</td>
<td>0.621</td>
<td>0.143</td>
</tr>
<tr>
<td>+ GRIN2A rs2650427</td>
<td>additive</td>
<td></td>
<td></td>
<td>0.621</td>
<td>0.158</td>
</tr>
<tr>
<td>Model</td>
<td>Genotypes</td>
<td>CAGmean ± SD</td>
<td>psychiatric AO mean ± SD</td>
<td>R²*</td>
<td>P value</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>HD CAG 40-67 (n = 241)</td>
<td>CC (n=139)</td>
<td>44.81±4.4</td>
<td>39.50±11.3</td>
<td>0.513</td>
<td>0.964</td>
</tr>
<tr>
<td>+ GRIN2B C2664T (rs1806201)</td>
<td>CT (n=90)</td>
<td>44.74±3.8</td>
<td>39.79±10.5</td>
<td>0.514</td>
<td>0.607</td>
</tr>
<tr>
<td></td>
<td>TT (n=12)</td>
<td>43.67±2.1</td>
<td>44.58±9.6</td>
<td>0.517</td>
<td>0.211</td>
</tr>
<tr>
<td></td>
<td>additive</td>
<td></td>
<td></td>
<td>0.514</td>
<td>0.618</td>
</tr>
<tr>
<td>+ GRIN2A rs1969060</td>
<td>TT (n=172)</td>
<td>44.79±4.1</td>
<td>39.01±10.9</td>
<td>0.523</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>TC (n=63)</td>
<td>44.01±3.7</td>
<td>42.78±9.8</td>
<td>0.523</td>
<td>0.033</td>
</tr>
</tbody>
</table>
To reduce heterogeneity, and to facilitate the discovery of clinically relevant biological pathways.

Inconsistent results may also occur because of difficulties in exact AO definitions. The data stresses the need for precise phenotyping in populations, the mixed ancestry in the EHDN REGISTRY study sample could account for heterogeneous results. Inconsistent results may also occur because of difficulties in exact AO definitions. The data stresses the need for precise phenotyping in order to reduce heterogeneity, and to facilitate the discovery of clinically relevant biological pathways.

Table 1 The variability in AO attributable to the CAG repeat length was assessed by linear regression using the logarithmically transformed AO as the dependent variable and GRIN genotypes as independent variables. *R² illustrates the relative improvement of the regression model, when the genotypes are considered in addition to the CAG repeats.

In order to control the effect of sex-specific associations, we further analysed each combination of genotype with sex, but there was no trend towards significance. Moreover, on average, psychiatric and cognitive symptoms significantly predate clinical motor onset by 3.5 and 4.8 years (p< 0.001), thus confirming that affective and cognitive symptoms could be early manifestations of neuronal dysfunction.

Discussion

Of the three polymorphisms tested, GRIN2A rs2650427 showed the most consistent evidence of replication in the EHDN Registry study sample. This is in accordance with another replication study in the large set of kindreds from Venezuela, where GRIN2A variation also explained a small but considerable amount of additional variance in residual AO.[5]

Yet, the interpretation of the association of cognitive AO with the GRIN2A rs2650427 polymorphism should be considered with caution since the sample size of this subgroub (n=112) is too small to provide the statistical power required.

Unfortunately, none of the SNPs associated has been validated functionally and it is most likely that the polymorphisms analysed are not the functional variations, but represent markers in linkage disequilibrium with variations that modify the AO. Although, synonymous SNPs like GRIN2B rs1806201 might be pathogenetically relevant via influencing mRNA splicing, protein stability and structure.

The failure to replicate the sex-specific effect of rs1806201 suggests that the original observation may have been false positive, emphasizing the need for stringent statistical thresholds. On the other hand, since linkage disequilibrium is not uniform across populations, the mixed ancestry in the EHDN REGISTRY study sample could account for heterogeneous results. Inconsistent results may also occur because of difficulties in exact AO definitions. The data stresses the need for precise phenotyping in order to reduce heterogeneity, and to facilitate the discovery of clinically relevant biological pathways.
Although the associations replicated explain only a small fraction of the variance of AO, the observed correlations with HD phenotypes demonstrate that GRIN2A and GRIN2B remain promising candidate genes, worth to be studied further in more detail.

Acknowledgments

The authors thank all EHDN Registry Study Group investigators for collecting the data and all participating patients for their time and efforts.

Correspondence to Dr Larissa Arning, Ruhr-University, Department of Human Genetics, Universitätsstr. 150, MA5/39, 44801 Bochum, Germany, larissa.arning@rub.de

Competing interests

The authors have declared that no competing interests exist.

Funding information

The European Huntington's Disease Network is funded by CHDI Foundation, Inc. CS was supported by FoRUM grant K040-09.

Ethics approval

This study was conducted with the approval of the local ethics committee of the different clinical centres.

Expansion of Collaborator List

Investigators of the European Huntington’s Disease Network

K Barth, Language coordinator
M Bascuñana Garde, Language coordinator
R Bos, Language coordinator
D Ecker, Language coordinator
OJ Handley, Language coordinator
N Heinonen, Language coordinator
C Held, Language coordinator
M Laurà, Language coordinator
A Martínez Descals, Language coordinator
T Mestre, Language coordinator
D Monza, Language coordinator
J Naji, Language coordinator
M Orth, Language coordinator
H Padieu, Language coordinator
S Pro Koivisto, Language coordinator
A Rialland, Language coordinator
P Sasinková, Language coordinator
P Trigo Cubillo, Language coordinator
M van Walsem, Language coordinator
Cinzia Russo, Azienda Ospedaliera Universitaria Federico II – Dipartimento di Scienze Neurologiche, Naples, Italy
Elena Salvatore, Azienda Ospedaliera Universitaria Federico II – Dipartimento di Scienze Neurologiche, Naples, Italy
Tecla Tucci, Azienda Ospedaliera Universitaria Federico II – Dipartimento di Scienze Neurologiche, Naples, Italy
Ferdinando Squitieri, Neurogenetics Unit – IRCCS Neuromed, Pozzilli, Italy
Tiziana Martino, Neurogenetics Unit – IRCCS Neuromed, Pozzilli, Italy
Sara Orobello, Neurogenetics Unit – IRCCS Neuromed, Pozzilli, Italy
Silvia Alberti, Neurogenetics Unit – IRCCS Neuromed, Pozzilli, Italy
Francesca De Gregorio, Neurogenetics Unit – IRCCS Neuromed, Pozzilli, Italy
Valentina Codella, Neurogenetics Unit – IRCCS Neuromed, Pozzilli, Italy
Nunzia De Nicola, Neurogenetics Unit – IRCCS Neuromed, Pozzilli, Italy
Vittorio Maglione, Neurogenetics Unit – IRCCS Neuromed, Pozzilli, Italy
Anna Rita Bentivoglio, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Neuroscienze/ CNR Istituto di Scienze e Tecnologie della Cognizione, Rome, Italy
Alfonso Fasano, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Neuroscienze/ CNR Istituto di Scienze e Tecnologie della Cognizione, Rome, Italy
Marina Frontali, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Neuroscienze/ CNR Istituto di Scienze e Tecnologie della Cognizione, Rome, Italy
Arianna Guidubaldi, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Neuroscienze/ CNR Istituto di Scienze e Tecnologie della Cognizione, Rome, Italy
Tamara Ialongo, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Neuroscienze/ CNR Istituto di Scienze e Tecnologie della Cognizione, Rome, Italy
Gioia Jacopini, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Neuroscienze/ CNR Istituto di Scienze e Tecnologie della Cognizione, Rome, Italy
Giovanna Loria, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Neuroscienze/ CNR Istituto di Scienze e Tecnologie della Cognizione, Rome, Italy
Carla Piano, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Neuroscienze/ CNR Istituto di Scienze e Tecnologie della Cognizione, Rome, Italy
Silvia Romano, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Neuroscienze/ CNR Istituto di Scienze e Tecnologie della Cognizione, Rome, Italy
Francesco Soleti, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Neuroscienze/ CNR Istituto di Scienze e Tecnologie della Cognizione, Rome, Italy
Maria Spadaro, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Neuroscienze/ CNR Istituto di Scienze e Tecnologie della Cognizione, Rome, Italy
Paola Zinzi, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Neuroscienze/ CNR Istituto di Scienze e Tecnologie della Cognizione, Rome, Italy
Arvid Heiberg, Rikshospitalet, Dept. of Medical Genetics, Oslo-RH, Norway
Marleen R van Walsem, Rikshospitalet, Dept. of Medical Genetics, Oslo-RH, Norway
Kathrine Bjergo, Ullevål University Hospital, Oslo, Norway
Madelein Fannemel, Ullevål University Hospital, Oslo, Norway
Per Gørvell, Ullevål University Hospital, Oslo, Norway
Lars Retterstøl, Ullevål University Hospital, Oslo, Norway
Inga Bjørnevoll, St. Olavs Hospital, Trondheim, Norway
Nicole Paterson, Cambridge Centre for Brain Repair, Forvie Site, Cambridge, UK
Lucy Raymond, Cambridge Centre for Brain Repair, Forvie Site, Cambridge, UK
Johnathan Bisson, The Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
Monica Busse, The Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
Lynda Ellison-Rose, The Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
Olivia Handley, The Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
Sarah Hunt, The Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
Jenny Najj, The Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
Kathleen Price, The Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
Anne Rosser, The Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
Stephen Dunnett, The Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
Maureen Edwards, Molecular Medicine Centre, Western General Hospital, Department of Clinical Genetics, Edinburgh, UK
Paul A. De Sousa, Molecular Medicine Centre, Western General Hospital, Department of Clinical Genetics, Edinburgh, UK
Teresa Hughes (Scottish Huntington’s Association), Molecular Medicine Centre, Western General Hospital, Department of Clinical Genetics, Edinburgh, UK
Marie McGill, Molecular Medicine Centre, Western General Hospital, Department of Clinical Genetics, Edinburgh, UK
Pauline Pearson, Molecular Medicine Centre, Western General Hospital, Department of Clinical Genetics, Edinburgh, UK
Mary Porteous, Molecular Medicine Centre, Western General Hospital, Department of Clinical Genetics, Edinburgh, UK
Paul Smith (Scottish Huntington’s Association), Molecular Medicine Centre, Western General Hospital, Department of Clinical Genetics, Edinburgh, UK
Adam Zeman, Molecular Medicine Centre, Western General Hospital, Department of Clinical Genetics, Edinburgh, UK
Nicol Lambord, Heavitree Hospital, Exeter, UK
Julia Rankin, Heavitree Hospital, Exeter, UK
Liz Burrows, Department of Neurology Gloucestershire Royal Hospital, Gloucester, UK
Amy Fletcher, Department of Neurology Gloucestershire Royal Hospital, Gloucester, UK
Fiona Laver, Department of Neurology Gloucestershire Royal Hospital, Gloucester, UK
Mark Silva, Department of Neurology Gloucestershire Royal Hospital, Gloucester, UK
Aileen Thomson, Department of Neurology Gloucestershire Royal Hospital, Gloucester, UK
Thomasin Andrews, Guy’s Hospital, London, UK
Andrew Dougherty, Guy’s Hospital, London, UK
Fred Kavalier, Guy’s Hospital, London, UK
Charlotte Golding, Guy’s Hospital, London, UK
Alison Lashwood, Guy’s Hospital, London, UK
Dene Robertson, Guy’s Hospital, London, UK
Deborah Ruddy, Guy’s Hospital, London, UK
Anna Whaite, Guy’s Hospital, London, UK
Michael Patton, St. Georges-Hospital, London, UK
Maria Patterson, St. Georges-Hospital, London, UK
Colin Bourne, Leicestershire Partnership Trust, Mill Lodge, Leicester, UK
Carole Clayton, Leicestershire Partnership Trust, Mill Lodge, Leicester, UK
Heather Dipple, Leicestershire Partnership Trust, Mill Lodge, Leicester, UK
Jackie Clapton, Leicestershire Partnership Trust, Mill Lodge, Leicester, UK
Janet Grant, Leicestershire Partnership Trust, Mill Lodge, Leicester, UK
Diana Gross, Leicestershire Partnership Trust, Mill Lodge, Leicester, UK
Caroline Hallam, Leicestershire Partnership Trust, Mill Lodge, Leicester, UK
Julia Middleton, Leicestershire Partnership Trust, Mill Lodge, Leicester, UK
Ann Murch, Leicestershire Partnership Trust, Mill Lodge, Leicester, UK
Dawn Patino, Leicestershire Partnership Trust, Mill Lodge, Leicester, UK
Thomasin Andrews, The National Hospital for Neurology and Neurosurgery, London, UK
Stefania Bruno, The National Hospital for Neurology and Neurosurgery, London, UK
Elvina Chu, The National Hospital for Neurology and Neurosurgery, London, UK
Karen Doherty, The National Hospital for Neurology and Neurosurgery, London, UK
Nayana Lahiri, The National Hospital for Neurology and Neurosurgery, London, UK
Marianne Novak, The National Hospital for Neurology and Neurosurgery, London, UK
Aakta Patel, The National Hospital for Neurology and Neurosurgery, London, UK
Sarah Tabrizi, The National Hospital for Neurology and Neurosurgery, London, UK
Rachel Taylor, The National Hospital for Neurology and Neurosurgery, London, UK
Thomas Warner, The National Hospital for Neurology and Neurosurgery, London, UK
Edward Wild, The National Hospital for Neurology and Neurosurgery, London, UK
Natalie Arran, Genetic Medicine, University of Manchester, Manchester Academic Health Sciences Centre and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
David Craufurd, Genetic Medicine, University of Manchester, Manchester Academic Health Sciences Centre and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
Ruth Fullam, Genetic Medicine, University of Manchester, Manchester Academic Health Sciences Centre and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
Liz Howard, Genetic Medicine, University of Manchester, Manchester Academic Health Sciences Centre and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
Susan Huson, Genetic Medicine, University of Manchester, Manchester Academic Health Sciences Centre and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
Lucy Partington-Jones, Genetic Medicine, University of Manchester, Manchester Academic Health Sciences Centre and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
Nichola Verstraalen (formerly Ritchie), Genetic Medicine, University of Manchester, Manchester Academic Health Sciences Centre and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
Julie Snowden, Genetic Medicine, University of Manchester, Manchester Academic Health Sciences Centre and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
Andrea Sollom, Genetic Medicine, University of Manchester, Manchester Academic Health Sciences Centre and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
Cheryl Stopford, Genetic Medicine, University of Manchester, Manchester Academic Health Sciences Centre and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
Jennifer Thompson, Genetic Medicine, University of Manchester, Manchester Academic Health Sciences Centre and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK

PLOS Currents Huntington Disease
References

