Author Profile

Fuat Balci

Affiliation: Department of Psychology, Koç University, Istanbul, Turkey

Koç University (BA) Rutgers University (MS) Rutgers University (Ph.D.) Rutgers University (Graduate Certificate in Cognitive Science) PsychoGenics Inc (Research Scientist) Princeton University (Post-doc) Koç University (Assistant Professor)

Recent Posts

High-Throughput Automated Phenotyping of Two Genetic Mouse Models of Huntington’s Disease


Phenotyping with traditional behavioral assays constitutes a major bottleneck in the primary screening, characterization, and validation of genetic mouse models of disease, leading to downstream delays in drug discovery efforts. We present a novel and comprehensive one-stop approach to phenotyping, the PhenoCube™. This system simultaneously captures the cognitive performance, motor activity, and circadian patterns of group-housed mice by use of home-cage operant conditioning modules (IntelliCage) and custom-built computer vision software. We evaluated two different mouse models of Huntington’s Disease (HD), the R6/2 and the BACHD in the PhenoCube™ system. Our results demonstrated that this system can efficiently capture and track alterations in both cognitive performance and locomotor activity patterns associated with these disease models. This work extends our prior demonstration that PhenoCube™ can characterize circadian dysfunction in BACHD mice and shows that this system, with the experimental protocols used, is a sensitive and efficient tool for a first pass high-throughput screening of mouse disease models in general and mouse models of neurodegeneration in particular.

Circadian Abnormalities in Motor Activity in a BAC Transgenic Mouse Model of Huntington’s Disease

Huntington’s disease (HD) is a progressive neurodegenerative disease marked by psychiatric and motor problems. Recently, these findings have been extended to deficits in sleep and circadian function that can be observed in HD patients and in HD mouse models, with abnormal sleep patterns correlating with symptom severity in patients. Here, we studied the behavior of the BAC HD mouse model using an 24/7 automated system; the results indicate significant lengthening of the circadian period in the mutant mice. These results reinforce previous findings in HD models and symptomatic HD patients, indicating that circadian dysfunction is a core feature of HD.