Statistician working at Norwegian Institute of Public Health
Since December 2013, an outbreak of Ebola virus disease (EVD) of unprecedented size and geographic extent has been ongoing in West Africa. As of 2014-12-03, over 17,000 cases and 6,000 deaths have been reported to the World Health Organization by the three most affected countries, Guinea, Liberia and Sierra Leone
The international response to this crisis has been widely criticized as slow and insufficient
Several models have been developed to forecast the progression of the outbreak, with and without intervention options. A model produced by the WHO's Ebola Response Team, published September 2014, aimed to document trends in the epidemic and project expected case numbers for the coming weeks
Since the creation of UNMEER, the international community has committed extensive resources to controlling the outbreak, including establishing ETCs in order to ensure patients are isolated. Although only a portion of the centres are operational at this time, the ETCs are designed to provide care to suspected and confirmed cases while preventing infection of healthcare workers and members of the community. Community Care Centres have also been promoted as a means to ensure patients are isolated in areas with insufficient ETC bed capacity or in remote areas without access to ETCs. ETCs can range in size from 20 to 400 beds, while CCCs are smaller, with 8 to 15 beds per facility. UNMEER and WHO had a 60 day target of having that capacity to isolate at least 70% of patients and ensure 70% of cases who die from EVD are safely buried by 2014-12-01
While multiple efforts have been made to model and forecast the epidemic, few have explicitly quantified the number of treatment places necessary to achieve the 70% target set by the CDC. Lewnard et al. developed a transmission model to assess the effectiveness of expanding EVD treatment centres, increasing case ascertainment and allocating protective household kits in Montserrado County, Liberia
We use a flexible mathematical model to estimate the number of treatment places, personnel and equipment needed to obtain the 70% target set by the CDC in Sierra Leone over the next two months (from 2014-12-04 to 2015-01-29) in order to provide firmer targets for the international response. We also reexamine what targets for treatment or isolation within a specified time frame are necessary to acheive a reproductive number below one.
To fit our model, we used the public data released by the World Health Organization
We developed a compartmental model to describe the outbreaks in Sierra Leone (Figure 1). Briefly, the population is divided into six compartments, with average rates and average time periods taken from the recently published WHO Ebola Response Team model
Susceptible individuals (S) may become Exposed (E) after contact with infectious material. After an average of 11.4 days (
In mathematical terms, the transition equations describing the model are given as:
Where
More concisely, the above average times, rates, and probabilities are clearly defined in Tables 1-3, with sources listed.
To estimate Reff and beginning starting values for the number of persons in compartments E and I, we implemented an ensemble trajectory model with the effective reproductive number allowed to change every 2*28=56 days (all other parameters were fixed and based from either the WHO or CDC model). The choice of 56 days was made based on preliminary simulations. When investigating the effect of varying the time interval with fixed transmissibility, we found that allowing the parameters to change every 28 days was too flexible and gave poor forward projections, while 72 days was not flexible enough and gave a poor model fit. Briefly, a matrix of plausible parameter values were generated (Reff=0.7, 0.8, ..., 2.4; E=2, 12, ..., 82; I=2, 12, ..., 82). For each parameter combination (
Where
From this, we calculated the probability that the outbreak was caused by each parameter combination:
Where C was a normalisation constant, and
Briefly, this model is a form of approximate Bayesian computation, which is essentially a Bayesian model with a non-informative prior that exchanges mathematical elegance for a high degree of computational work. To describe this model in a typical Bayesian form, we would explain that we fit a non-informative prior on the effective reproduction number, allowing it to vary between 0.7 and 2.4, changing every 56 days. We would then construct a likelihood for the model and attempt to estimate a plausible distribution for Reff. As we allowed the effective reproductive number to vary every 56 days, it was difficult to construct a likelihood for the model and even more difficult to obtain convergence. Approximate Bayesian computation is useful in such situations, as one simply runs the model for all plausible values of the parameters (in this case, Reff), and retains parameter combinations that result in model estimates within a prespecified band of tolerance surrounding the outcome variable. These saved parameter combinations form the posterior distribution of the estimated parameters. Bettencourt's form of approximate Bayesian computation is a less computationally intensive form of approximate Bayesian computation, which allows for a gradiated band of tolerance instead of a clear accept/reject criterion.
For each parameter combination that had support in the first 56 days of the outbreak, we fitted another 18 models (Reff=0.7, 0.8, ..., 2.4) and repeated the same procedure. This algorithm was run until it reached the end of the reported data, at which point the probability of the outbreak being caused by each trajectory was calculated. Each trajectory was then forecast to the present day (2014-12-04) and 56 days beyond, with estimated probabilities assigned.
To obtain estimates for each compartment, the differential equations listed above were solved using the "lsoda" function in R (version 3.1.1). From the compartmental model, we extracted the number of estimated cases, new estimated cases each day, estimated reported cases, new estimated reported cases each day, exposed persons currently in the incubation period, EVD cases currently in treatment and non-infectious, and EVD cases currently unreported and infectious in the community.
We implemented a simpler version of the CDC's recommended proportions (25% to ETCs and 45% in community centres) of isolated cases to test their efficacy. Again due to poor data quality and uncertainty regarding the situation on the ground, we considered that all cases were grouped together in a single non-infectious state after being reported. We investigated the impact of 0, 10, ..., 90, 100% of infectious EVD cases receiving treatment or being isolated after 0, 1, ..., 10 days on average. This is in contrast to the baseline projection where 40% are treated (i.e. considered reported and non-infectious) after an average of 5 days. We observed which of the interventions resulted in a reproductive number below one, which is necessary for ending the epidemic.
Most organizations calculate that upwards of 110 healthcare personnel, including doctors, nurses and nurses' aids, and 100 other personnel, including logistics, water and sanitation, waste teams, cooks, laundry and cleaners, drivers and security are required for a 100-bed ETC
From a visual observation, the model fit is sufficient (Figure 2). We also performed a goodness of fit test by regressing the new case residuals (new daily predicted cases minus new daily observed cases) against time, and found there to be no significant slope nor intercept.
Using the last 56 days of outbreak data (2014-10-09 to 2014-12-03), we estimated that the effective reproductive number was 1.1 (95% CI=0.95 to 1.24) in Sierra Leone. Reporting for the entire outbreak, the reproductive number was estimated to be 2.13 from 2014-05-22 to 2014-06-18, 1.32 from 2014-06-19 to 2014-08-13, 1.58 from 2014-08-14 to 2014-10-08, and 1.1 from 2014-10-09 to 2014-12-03.
Variable
2014-12-04
2015-01-01
2015-01-29
Days from today
0
28
56
Cases (reported)
7528
10378
13665
(7206, 7850)
(9053, 11703)
(10472, 16857)
New daily cases (reported)
95
109
126
(70, 119)
(59, 159)
(41, 211)
Cases (corrected for underreporting)
37191
50415
65701
(34838, 39543)
(42551, 58278)
(48134, 83267)
New daily cases (corrected for underreporting)
439
505
586
(301, 577)
(242, 769)
(150, 1023)
Incubation period
5017
5776
6702
(3418, 6615)
(2743, 8809)
(1682, 11722)
Infectious and unreported
3751
4308
4987
(2778, 4723)
(2321, 6295)
(1597, 8378)
Undergoing treatment
810
928
1072
(646, 973)
(558, 1298)
(416, 1728)
Beds for CDC target of 25% cases in ETC
1140
1309
1515
(894, 1387)
(804, 1814)
(651, 2378)
Beds for CDC target of 45% cases in reduced transmission
2052
2356
2727
(1608, 2496)
(1447, 3266)
(1173, 4281)
Reporting (treatment) quotient
40%
40%
40%
Per today (2014-12-04), we estimate that there are 810 (95% CI=646 to 973) EVD active cases in treatment, with an additional 3751 (95% CI=2778 to 4723) EVD cases unreported and untreated (Table 4). Furthermore, we have estimated that there are 439 new symptomatic cases every day (Table 4).
If the outbreak continues with a reproductive number of 1.1 (95% CI=0.95 to 1.24), in 28 days (2015-01-01) this number will increase to 505 new cases every day, corresponding to a total of 50415 (95% CI=42551 to 58278) cumulative total cases (Table 4). In a further 28 days (2015-01-29) this will increase to 586 new cases every day, corresponding to a total of 65701 (95% CI=48134 to 83267) cumulative total cases (Table 4).
To reach the CDC targets today, we need 1140 (95% CI=894 to 1387) cases in ETCs and 2052 (95% CI=1608 to 2496) at home or in a community setting such that there is a reduced risk for disease transmission through effective isolation (Table 4 and Figure 3). If the outbreak continues with a reproductive number of 1.1 (95% CI=0.95 to 1.24), in 28 days (2015-01-01), we will need 1309 (95% CI=804 to 1814) EVD cases in ETCs and 2356 (95% CI=1447 to 3266) EVD cases at reduced risk of transmission (Table 4 and Figure 3). In a further 28 days (2015-01-29) we will need 1515 (95% CI=651 to 2378) EVD cases in ETCs and 2727 (95% CI=1173 to 4281) cases at reduced risk of transmission (Table 4 and Figure 3).
As of today (2014-12-04), we estimate that 2394 staff members are needed to operate ETCs that cover 25% of cases in Sierra Leone (Figure 4). This includes 114 doctors, 570 hygienists, 570 nurses/paramedics, and 1140 support staff. If this incidence of cases increases as projected and the targets of 25% of cases in ETCs is maintained, 2748 staff members will be required in 28 days (2015-01-01), and 3183 staff members will be required in an additional 28 days (2015-01-29).
We found that 70% containment/treatment after the five days baseline was sufficient to contain the epidemic. More specifically, 40% containment/treatment after one day, 50% after three days, 60% after five days, 70% after six days, and 90% after seven days were all sufficient scenarios (Figure 5). However, these numbers are based upon the uncertain estimate that currently 40% of cases are non-infectious, which may not be applicable.
More detailed results (including daily projections for the next six months) can be found in the appendix.
As of 2014-12-04, the outbreak of EVD in Sierra Leone is not yet under control and the incidence continues to increase. Although there are significant challenges associated with collecting and interpreting data in this context, our findings reinforce that the capacity for treatment and isolation is not yet sufficient to successfully break the chains of transmission in Sierra Leone.
Although the most recent Ebola Response Roadmap Situation Update suggests that more than 70% of cases are being isolated in most affected districts, only 35% of planned ETC bed capacity and 16% of planned CCC bed capacity are operational in Sierra Leone
As the available data indicates considerable variability in incidence sub-nationally, more flexible approaches to isolation and treatment may be required. There are indications that ETCs in some areas are not operating at full capacity as control measures have been successful in some districts. As the establishment of ETCs can be time-consuming and the facilities themselves can be difficult to relocate to meet needs of the developing outbreak, delays associated with establishing semi-permanent structures as ETCs may ultimately lead to further spread of the outbreak. It is also imperative to ensure that resources are distributed in areas with most need, which is an inherent challenge as the epidemiology of the outbreak changes. Our model reinforces that delays in intervention will lead to substantial increases in the required treatment capacity and manpower and that the speed of isolation after symptom onset among cases reduces the proportion that need to be isolated in order to reduce transmission. Other models have also highlighted the importance of ensuring sufficient resources to provide isolation for infected individuals within 4 days of symptom onset
Organizations such as MSF are now reporting that new approaches that allow for rapid and flexible response are required at this stage in the outbreak, allowing response teams to be rapidly deployed to hotspots
One significant challenge with outbreak models is that they become outdated very quickly as the outbreak progresses. We therefore present today's numbers (1140 (95% CI=894 to 1387) cases in ETCs and 2052 (95% CI=1608 to 2496) cases in reduced transmission) as the minimum needed to reverse the outbreak. This is because even if the outbreak slows, today's numbers will still need to be achieved to push the reproductive number below one, unless another way of reducing transmission is found. Thus in the absence of effective vaccines or other preventative measures, 1140 (95% CI=894 to 1387) cases in ETCs and 2052 (95% CI=1608 to 2496) cases in settings leading to reduced transmission should remain as firm minimum targets for the international community, and will likely need to be exceeded given the growing context of the outbreak.
Our model allows for 56 day changes in the effective reproductive number, however, this is not analysed in a manner that allows a parametric trend to predict into the future. Instead, the effective reproductive number from the last 56 day period is extrapolated out into the future. We chose this approach for two reasons: firstly, from analysing piecewise 56 day periods, we found that the effective reproductive number varied in such a way that was not amenable to a parametric model. Secondly, with the outbreak response changing so rapidly, we did not think that using trend data from 100 days ago would be applicable to current data.
This study has a number of limitations. First and foremost, we model at the country level and only include data from Sierra Leone. This masks many geographical variations that may be happening at a more discrete level. In addition, it is highly likely that our lack of contact heterogeneity will result in overestimations of the outbreak. For this reason, we urge the reader to primarily focus on the results for "today," which are not susceptible to future overestimations. Secondly, we assume that registered cases are in treatment and thus non-infectious. While it was assumed by the WHO model that hospitalised cases were non-infectious, it is well documented that healthcare workers are continually being infected (although it has been noted that the majority of the healthcare workers were infected at home or in their local community). We are also uncertain as to our assumption that registered cases are in treatment; considering the overwhelmed nature of the West African health system. It is entirely likely that a great number of the new cases come from counting dead bodies. Furthermore, we do not account for the temporal changes in available treatment capacity in Sierra Leone. However, we believe that in the context of the goals of this study, these assumptions are acceptable. As our goal was to convert the CDC's soft target (in percentages) to a hard target of number of cases needing treatment, any temporal changes or misspecification of the model should be accounted for in our estimation of the effective reproductive number. For example, if there is a dramatic increase in treatment capacity, our estimated effective reproductive number should drop. Our assumption that reported individuals are not infectious will cause the effective reproduction number to rise. However, as long as the estimated number of cases concurs with the reported numbers, our model has met its goal in estimating the number of people currently alive with EVD. It is because of this that we choose not to focus our discussion on the effective reproductive number, nor compare with other models. In addition, this model is based on reported case data, which has significant underreporting that varies over time and geographical region. Our model attempts to correct for underreporting, however, it is not possible to validate how accurately we have done so. Finally, our model assumes that the outbreak will continue growing as it has in the past - while unlikely, the recent international efforts may have had some effect that will take place in the near future.
One issue with our model is that it was fitted using cumulative case counts, which contains autocorrelation in the errors and will yield biased estimates. Considering the goals of the model, we believed that this was the best choice. As our goal was to obtain estimates surrounding the current condition, our fitting procedure ensured that the most weight was given to the most recent (and largest) observations. However, our future predictions are most likely biased and should be treated with scepticism.
Widely reported changes have occurred in a number of areas of this epidemic: social distancing, treatment, burials, etc. We have limited information on these changes, and instead decided to base our model on two high quality sources of data (the WHO and CDC models) in favour of vague descriptive statistics that change frequently. By allowing our effective reproductive number to change every 56 days, we hope that our model will capture some of these changing parameters, which can be seen by the high quality fit of our model to the observed data. Our model assumes that after five days, 40% of the cases will be non-infectious due to some sort of treatment. If this assumption is incorrect, then our reproductive number estimate and Figure 5 will also be incorrect. However, our estimates for the number of cases (and thus the number of beds needed to reach the CDC targets) will still be correct, as this assumption only affects the relationship between the number of currently infectious cases and how they infect the susceptible. It does not affect the overall number of cases currently alive. These unaffected numbers are then multiplied against the 25%/45% CDC numbers and we obtain our estimates, independent of whether our treatment proportion or reproductive number are correctly estimated. If the CDC 2.5x (40%) underreporting figures are incorrect (which is highly likely, given that it was estimated at one point, many months ago), then the estimated numbers of people in "treatment" (i.e. uncorrected for underreporting) can then be interpreted as the number of EVD cases still alive and needing treatment. These numbers should be approximately correct, given the high quality fit of the model to the observed data.
The largest outbreak of EVD in history is ongoing in Sierra Leone, with no indications as of 2014-12-04 that incidence is decreasing. Although concerted effort is being made by local authorities and the international community to stop transmission, current treatment and isolation facilities are insufficient. If the outbreak continues to spread, the response will be further complicated as the number of cases will overwhelm planned interventions. ETCs may not be flexible enough to accommodate the changing epidemiology of the outbreak and the number of international staff required to run sufficient facilities will be difficult to recruit. If the urgent need for isolation and treatment is not met, other control measures must be available, including community-based approaches to treatment and isolation, as well as development of a vaccine that can protect the susceptible population.
Richard A White and Emily MacDonald are joint first authors.
Data available on figshare:
Data available on figshare: