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Abstract

Quantifying the age of recent species divergence events can be challenging in the absence of calibra‐
tion points within many groups. The katydid species Neoconocephalus lyristes provides the opportu‐
nity to calibrate a post-Pleistocene, taxa specific mutation rate using a known biogeographic event, the
Mohawk-Hudson Divide. DNA was extracted from pinned museum specimens of N. lyristes from
both Midwest and Atlantic populations and the mitochondrial gene COI sequenced using primers de‐
signed from extant specimens. Coalescent analyses using both strict and relaxed molecular clock mod‐
els were performed in BEAST v1.8.2. The assumption of a strict molecular clock could not be rejected
in favor of the relaxed clock model as the distribution of the standard deviation of the clock rate
strongly abutted zero. The strict molecular clock model resulted in an intraspecific calculated mutation
rate of 14.4-17.3 %/myr, a rate substantially higher than the common rates of sequence evolution ob‐
served for insect mitochondrial DNA sequences. The rate, however, aligns closely with mutation rates
estimated from other taxa with similarly recent lineage divergence times.

Introduction

In recent years, many examples of rapid speciation and diversification occurring during the last glacial
cycle (i.e., within 500 kyr BP ), or even after the last glacial maximum (LGM, 19 kyr BP ) have
been described. Arguably, the most impressive examples of rapid diversification are the cichlid radia‐
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tion events within the African Rift Valley, where a small number of founding species diversified into
hundreds of species after the LGM . Other examples include the old world pea aphids , North
American songbirds , and the threespine sticklebacks of British Columbia ; in some cases, sig‐
nificant diversification arose in as little as 50 years .

The accurate timing of diversification events allows us to better understand the mechanisms leading to
phenotypic diversification and/or speciation. Molecular clock techniques allow the timing of diversifi‐
cation events based on estimates of the rate of genetic mutations per unit time . Mutation rates are
gene specific and can vary between lineages and through time within a lineage . Therefore, accu‐
rate dating using a molecular clock requires reliable calibration of the rate of sequence evolution for
that particular group, time interval, and gene. Rates can be calibrated using nodes dated from fossils 
and from biogeographic vicariance events .

Estimates of nucleotide evolution vary greatly dependent with the age of the calibrating point, with
younger calibration points resulting in higher rate estimates . Fossils and most biogeographic
events are ancient (millions of years old) and are appropriate for the dating of similarly ancient events.
The few available rate estimates using very young age calibration points (<200kyrs ) suggest an
exponential increase of estimated rates ; additional data is needed to support this pattern. The
exponential pattern of estimates is likely an artifact of the estimation methods and does not reflect true
differences in rates on nucleotide evolution . One reason for the small number of estimates for recent
lineage divergences is that suitably recent calibration points are scarce , since these events are too
recent to use fossil evidence.

Here we use a postglacial vicariance event to calibrate a lineage specific mutation rate for North
American Neoconocephalus katydids. At a time following the LGM, water from the North American
Great Lakes drained through the Mohawk-Hudson Outlet to the Atlantic coast . Wetland habitats
formed within the Hudson and Mohawk Valleys, which allowed coastal plain species to expand their
ranges into the wetlands surrounding the Great Lakes . The opening of the St. Lawrence Seaway
(10,750-10,600 14C yr BP ), diverted melt water and led to the drying of the wetlands in the
Mohawk-Hudson outlet. This vicariance event left disjunct wetland habitats in the Midwest (mainly
bogs and fens) and along the Atlantic Coast (bogs and marsh habitat). Such disjunct ranges matching
this pattern are found in plant, reptile, amphibian, and insect species possessing a coastal plain affinity

. Neoconocephalus lyristes is an example of such a habitat specialist, limited to bog and fen
wetlands. The species’ described range follows the pattern of the Mohawk-Hudson Divide, with iso‐
lated populations in the Great Lakes area  and North Atlantic Coast (  Fig. 1).

The eleven North American Neoconocephalus katydid species possess markedly little genetic varia‐
tion despite their high diversity of species-specific call patterns and may be an example of a recent
species radiation . The accurate timing of this radiation will help identify the evolutionary mecha‐
nisms leading to rapid species diversification observed in this group. Neoconocephalus lyristes pro‐
vides a unique opportunity among species of Neoconocephalus for the calibration of a post-
Pleistocene mutation rate as gene flow between these two disjunct ranges likely ceased with the drain‐
ing of the Mohawk-Hudson Outlet (10,750-10,600 14C yr BP ). Here we sequenced mtDNA from
museum specimens representing both populations and estimated an intraspecific mutation rate using a
coalescent Bayesian method.
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Methods

Over three years of searching previous collection sites we found only a single extant population of N.

lyristes, in Cedar Bog Nature Preserve, Urbane, OH, USA. Due to apparent local extinction of N.

lyristes from most of its Midwest and its entire Atlantic range, we used museum samples collected in
the first half of the 20th century. We selected 18 dried N. lyristes specimens, from the Hebard
Collection at the Academy of Natural Sciences of Drexel University for DNA extraction and analysis.
Specimens represent samples from both Atlantic Coastal and Midwest populations (Fig. 1), with col‐
lection dates ranging from 1905-1932. We used a non-destructive method for DNA extraction (modi‐
fied from ). A hind leg was removed and placed in a 1.5 ml microcentrifuge tube fully submerged in
one ml of digestion buffer: 3 mM CaCl2, 2% sodium dodecyl sulphate (SDS), 40 mM dithiothreitol
(DTT), 250 mg/ml proteinase K, 100 mM Tris buffer pH 8 and 100 mM NaCl (quantities represent
molarity of final concentrations). Hind legs were incubated overnight (17-19 hrs.) at 55°C. Following
digestion we removed the hind legs from buffer and placed them in 100% EtOH for two hours to stop
enzymatic activity. Extraction of DNA contained in the buffer was completed using the standard
Qiagen DNeasy Blood + Tissue Kit (Qiagen Inc., Valencia, CA, USA) extraction method.

Amplification took place in a laboratory without prior exposure to DNA that could be amplified by
primers used in this study. Polymerase chain reaction (PCR) prep was performed in a UV hood. All
equipment and surfaces were sanitized with a 10% bleach solution and tools were sanitized in a UV
Stratalinker 1800. For this study we designed six overlapping primer pairs (Appendix: Supplemental
Table 1) around non-variable regions of the mitochondrial gene cytochrome oxidase I (COI). These
primers were based upon extant N. lyristes, N. robustus, and N. bivocatus COI sequences and designed
using the Primer3  plugin in Geneious v6.0.5 . Each primer pair amplified approximately 150 bp;
combined, they provide complete coverage of the 743 bp target region.

PCR amplification was performed on an Eppendorf Mastercycler gradient (Eppendorf-Brinkman
Instruments Inc., Westbury, NY, USA) using Taq DNA polymerase (Platinum Taq, Invitrogen Inc.,
Carlsbad, CA, USA). All primers were used at a concentration of 10 mM. Thermocycling conditions
for all six primer-sets are as follows: Hot start at 94°C 2 min, denaturation at 94°C 30 sec, annealing
at 56°C 30 sec, extension 72°C 40 sec, repeated 40x, with a final 72°C extension for 7 min. Amplified
PCR products were prepared for sequencing using a ExoI/SAP enzymatic cleanup (2.75 μl 10x SAP
buffer, 0.5 μl SAP, 0.25 μl ExoI per 20 μl of PCR product) incubated at 37°C for 30 min, followed by
80°C for 15 min to inactivate enzymes. Sequencing was performed at the DNA Core Facility,
University of Missouri, Columbia, MO, USA on an ABI 3730 DNA Analyzer, using standard Big Dye
Terminator cycle sequencing chemistry (Applied Biosystems, Foster City, CA, USA). Sequences were
edited, aligned and trimmed in Geneious v6.0.5 . We used a global alignment with free end gaps and
70% similarity rule. Regions of sequence with high ambiguity were labeled as missing. One individ‐
ual, with greater than ten percent ambiguity, was removed from the analysis (m017). Individual m007
failed to amplify. We successfully sequenced COI from 16 individuals.

We evaluated substitution models using jModel Test v0.1.1  and found GTR+G to be a suitable
model. Phylogenetic analyses were conducted using a coalescent method as implemented in BEAST
v1.8.2 xml ; input files were formatted using BEAUti v1.7.4 . Our analysis assumed a constant
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population size for the coalescent inferences . We ran this analysis to convergence, performing ten
runs with twenty million generations sampled every two thousand trees. We assessed convergence
through visual inspection of posterior values among the ten runs in Tracer v1.5 . This analysis was
performed using both a strict , as well as a relaxed molecular clock model . The Midwest individu‐
als were run both unconstrained as well as constrained to monophyly. The constrained run assured that
the age calibration point was assigned to the correct node in all trees . To evaluate the influence of
the prior settings on the posterior samples, we repeated the analysis as above but without any se‐
quence data.

Using the radiocarbon date of 10,750±150 14C yr BP, the end of 150-300 year period of steady melt
water flow following the final large flood through the Hudson Valley at 10,900 14C yr BP , we cali‐
brated the calendar age of the Mohawk-Hudson Divide. We performed the radiocarbon to calendar age
conversion using the IntCal13 curve in OxCal v4.2 online . The age estimate was fixed to the high‐
est likelihood value within the 95% confidence interval; yielding a calibrated date of 10,739.5 cal BP.
Being a known biogeographic barrier we allowed the node age prior probability of the Midwest clade
to vary along a normal distribution, with the calibrated date as the mean age and a standard deviation
of one-thousand years. This allows for the possibility of lineage divergence prior to the biogeographic
event, as well as the overestimation of the events age . The Euclidean mean and standard deviation
priors were set to exponential with mean values of 10 and 0.3 respectively. Convergence of MCMC
runs was visualized using Tracer v1.5  to ensure that all runs converged. With Tracer v1.5 we ascer‐
tained the average mutation rate between populations of N. lyristes based on the Mohawk-Hudson cal‐
ibration. Runs were combined in LogCombiner v1.8.2  and a maximum clade credibility consensus
tree was formed in TreeAnnotator v1.7.4 .

Results

We successfully sequenced 743 bp of the mitochondrial gene COI from sixteen individuals (5 from
Midwest and 11 from Atlantic Coast populations, Table 1). Sequence similarity among the 16 samples
ranged from 92.0% to 99.8%. We found the greatest diversity within the Atlantic population. The
Midwest clade fell within the larger clade of Atlantic Coast N. lyristes (Fig. 2). This observation is
congruent with the hypothesized biogeographic history of the species where the Midwest populations
diverging from the ancestral Atlantic population.

Using the unconstrained coalescence model, four out of five Midwestern individuals formed a clade
within the larger clade of Atlantic Coast N. lyristes. One Midwest individual (m010) grouped among
Atlantic individuals (Appendix: Supplemental Fig. 1). In order to prevent the age calibration point
from being assigned to the wrong nodes in some trees we constrained the Midwest clade to mono‐
phyly in further analyses . The resulting constrained consensus tree (Fig. 2) is congruent with the
hypothesized biogeographic history of the species, with the Midwest population diverging from the
ancestral Atlantic population.

Using a relaxed clock model, we obtained branch specific mutation rates between 14.4 and 37.5
%/myr from the consensus of the ten runs. The average rate of mutation among branches was 15.8
%/myr, ranging from 15.7-15.9 %/myr between the ten independent runs. The distribution of the stan‐
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dard deviation of the clock rate strongly abutted zero when the relaxed molecular clock was used (Fig.
3). This indicates support for a constant rate of substitution and a strict molecular clock was used .
The strict molecular clock analysis produced a tree (Fig. 2) with a similar, but not identical, topology
to the relaxed clock’s consensus tree. The relationship between Midwest animals and their relationship
to the Atlantic clade remained unchanged, with minor changes in the relationships between Atlantic
individuals. The strict consensus tree, with Midwest clade constrained to monophyly possessed an av‐
erage mutation rate of 17.3 %/myr, with mutation rates between the ten runs. Predictably, a slower rate
of 14.4 %/myr was obtained when the same analysis was run with individual M010 removed. These
two rates, while diverging slightly, both indicate a rate of mutation significantly faster than most re‐
ported in the literature .

Discussion

Here, we focused on the calibration of an intraspecific mutation rate at a very recent timescale.
Evolutionary rates calibrated across divergent timescales can be markedly different , with younger
calibration dates (<1 Mya) showing substantially higher estimates of rates divergence than older lin‐
eages . In mammals, for example, the age of the calibration dates shows a negative relationship
with estimates for molecular evolutionary rates . Metastudies utilizing insect mtDNA rates esti‐
mated from both inter- and intraspecific calibrations show a similar pattern to that observed in mam‐
mals . Available data suggest an exponential increase of estimated rates  with decreasing
calibration age (Fig. 4). The exponential pattern of estimates is likely an artifact of the estimation
methods and does not reflect true differences in rates on nucleotide evolution .

The sequence variation among populations has two components, fixed substitutions between them that
have accumulated since divergence and current within population variation . The fixed substitutions
among lineages represent the actual evolutionary divergence. Most of the within population genetic
variation will be removed over time by genetic drift and selection and therefore only a small fraction
will ultimately contribute to lineage divergence . For young divergence times, the within species
variation will contribute a much larger fraction of the total nucleotide differences, as only few fixed
substitutions have accumulated. For ancient divergence times, in contrast, the same amount of within
population variation would be dwarfed by fixed substitutions accumulated since divergence .
Thus, short calibration times should lead to gross overestimations of evolutionary divergence rates,
while ancient calibration times (>1 Mya ) should provide much more realistic estimates.

Insect mtDNA rates of mutation:

We estimated a mutation rate for COI at 14.4-17.3 %/myr, using the strict molecular clock model and
a very recent calibration time. Our estimate is significantly higher than the commonly assumed
mtDNA mutation rate of 1.15 %/myr , which were based on much older divergence times.
Estimates of substitution rates calibrated from the age of the Mid-Aegean Trench (9-12 Mya), for ex‐
ample, within an insect model range from 1.0-2.7 %/myr dependent upon application of various sub‐
stitution and clock models . Our estimated rate of 14.4-17.3 %/myr, on the other hand, aligns with
estimates found using similarly recent calibration dates (Fig. 4). A mutation rate of 19.2 %/myr was
estimated for the European butterfly Parnassius mnemosyne, calibrated with a vicariance event at
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10,000 years BP . Intermediate calibration dates resulted in an intermediate estimate of evolutionary
rates. The mutation rate for the North American ground beetle (Nebria) was estimated at 5.7 %/myr,
using a vicariance event dated to 150,000 years BP . Our estimates for N. lyristes fit into the expo‐
nential pattern previously described (Fig. 4). Thus, this study agrees with the slower estimates of
Orthopteran mtDNA sequence evolution and may serve as an internal calibration point for
Neoconocephalus diversification.

The high mutation rate inferred from our data set could be due to problems in the mathematical
models underlying the molecular clock. This seems unlikely, since both fixed clock and relaxed clock
models lead to nearly identical results. Furthermore, the close fit of our data point to data from previ‐
ous work conducted with a variety of methods  suggests that our particular methods were not re‐
sponsible for the high estimated mutation rate.

As more evidence accumulates supporting the occurrence of postglacial species diversification, the
greater the need for appropriate tools for timing these events. This will in part include the utilization
of young vicariance events for molecular clock calibration. Geologically supported postglacial vicari‐
ance events within North America are lacking for many taxa groups . The Mohawk-Hudson
Divide provides a recent biogeographic vicariance event, with the potential for the calibration of lin‐
eage specific mutation rates for a number of plant, amphibian, reptile, and insect groups.

Use of museum samples:

The use of ancient DNA (aDNA) samples can be hindered by severe degradation . In this study
two of the eighteen samples could not be sequenced successfully. These two samples were not the old‐
est, nor from the same locality. Severe degradation of DNA, beyond that in the other sixteen samples,
or a mismatch in primer binding sites may account for failed amplification (Table 1). In those samples
that were sequenced successfully ambiguities were high, while this is likely due to the degraded nature
of aDNA, the coamplification of nuclear pseudogenes could also lead to such ambiguities. The ampli‐
fication of relatively short (150 bp) segments increases the likelihood of amplifying pseudogenes, not
amplified when targeting longer sequences. Nuclear pseudogenes of COI, while not noted in
Neoconocephalus, have been found in other Orthopterans . We found no internal stop codons within
our COI sequences. As internal stop codons are common in pseudogenes, it is unlikely that our data is
affected by their presence. Our primers were developed from COI reference sequences from three ex‐
tant Neoconocephalus species. Amplification would therefore not be affected by sequence degrada‐
tion, as may be the case if primers are developed from the aDNA itself. One concern with the use of
aDNA is sequence degradation, with post mortem C-U deamination , reflected in higher than ex‐
pected percentage of Thymine in resulting sequences. We compared the percentages of nucleotides in
sequences from our museum specimens and from live collected N. lyristes, which were almost identi‐
cal (e.g., GC content 35.1% v. 36.2%). This indicates that sequence degradation has minor, if any, in‐
fluence on our results.

In this study museum specimens replaced extant samples, necessitated by the rarity, or likely local ex‐
tinction, of N. lyristes from most of its known range. Despite the additional challenges of working
with museum specimens, aDNA can replace extant specimens when collection is either not possible
because of extinction  or broad resampling is untenable .
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With advances in the amplification of ancient DNA , museum collections are also opening up
areas of study that are not possible with extant data alone . Ancient DNA can be utilized in the
calibration of molecular clocks through dating tip ages . Samples from multiple time points, can pro‐
vide additional information about the genetic and demographic changes in groups over time .
Ancient DNA has been used in the reconstruction and timing of many mammal groups , but
remains underutilized in the timing of insect lineages despite the abundance of specimens in
museums. Several of the problems associated with the use of aDNA can be overcome by next genera‐
tion sequencing (NGS). For example, NGS has the capability to target short and degraded DNA sam‐
ples . NGS also allows for the sequencing of whole genomes from aDNA  and less destructive
sampling techniques from Museum samples .
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Figures and Tables

Historic collection sites for N. lyristes overlaid with hypothesized range.

Sites are modified from  based on literature and collection records. The collection localities of museum samples used in this

study are indicated in red.
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Table 1: Museum specimen list

N. lyristes pinned specimens obtained from the Hebard collection at the Academy of Natural Sciences of Drexel University.

Included is all relevant data from specimen label, as well as the ambiguities present in final sequences. (*) denotes samples re‐

moved from analysis for failed amplification or excess ambiguity.

Study reference # Locality Collection Date Collected/ID by Ambiguities (#/743 bp)

m001 Cape May Court House, NJ 1914 Hebard 0

m002 Cape May Court House, NJ 1914 Hebard 1

m003 Cape May Court House, NJ 1914 Hebard 0

m004 Cape May Court House, NJ 1914 Hebard 1

m005 Cape May Court House, NJ 1914 Hebard 0

m006 Cape May Court House, NJ 1914 Hebard 24

m007 Cedar Swamp, OH 1929 Unknown N/A*

m008 Cedar Swamp, OH 1932 Edward S. Thomas 25

m009 Cedar Swamp, OH 1932 Edward S. Thomas 0

m010 Chicago, IL (Beach IL) 1906 Unknown 2

m011 Chicago, IL (S. of Jackson Park) 1905 Unknown 18

m012 Chicago, IL (S. of Jackson Park) 1905 Unknown 15

m013 Whitesbog, NJ 1923 Det. D.C. Rentz (1974) 0

m014 Whitesbog, NJ 1923 H. Fox 0

m015 Whitesbog, NJ 1923 Unknown 0

m016 Whitesbog, NJ 1923 H. Fox 0

m017 Whitesbog, NJ 1923 Unknown 103*

m018 Whitesbog, NJ 1923 Unknown 1



Consensus tree from coalescence analysis using a strict molecular clock model and Midwest clade

constrained to monophyly

Nodes possessing <0.85 posterior probabilities were collapsed. Red star represents the Mohawk-Hudson Divide, with the prior

of the node age set to a normal distribution with a mean age of 10,739.5 cal BP. The Midwest specimen m010 fell outside of the

Midwest clade prior to constraining the group to monophyly.



Distribution of the standard deviation rates from relaxed clock analysis

Includes data from ten combined runs (twenty million generations sampled every two thousand trees) using a relaxed molecular

clock model. Units for the clock rate are in substitutions per site per million years. The distribution strongly abuts zero, indicat‐

ing support for a strict molecular clock .51
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Estimates of evolutionary rates (%/myr) plotted against calibration age (myr)

The black data points were obtained directly from . The red point represents the mutation rate estimate from this study. Note

both axes are in log scale.

Supplemental Table 1: Table of primers designed for amplification of N. lyristes COI sequences

Primers were designed from reference sequences of extant N. lyristes, N. bivocatus, and N. robustus.

Primer name Primer sequence

lyF68 (forward) 5’-GGA ATT GCA CAT GCT GGA GC-3’

lyR197 (reverse) 5’-GTG ATA TTC CTG GGG CAC GT-3’

lyF187 (forward) 5’-ACG TGC CCC AGG AAT ATC AC-3’

lyR336 (reverse) 5’-CCG GCA GGA TCA AAG AAT GA-3’

lyF317 (forward) 5’-TCA TTC TTT GAT CCT GCC GGA-3’

lyR466 (reverse) 5’-GGC TTC CTT TTT CCC ACT TTC T-3’

lyF440 (forward) 5’-AGT CAA GAA AGT GGR AAA AAG GA-3’

lyR589 (reverse) 5’-AGC TGA AGT AAA ATA RGC TCG TG-3’

lyF545 (forward) 5’-ACA GTA GGA ATG GAT GTT GAT ACA C-3’

lyR694 (reverse) 5’-GCC TAG AGC TCA TAA AAG GGA AG-3’

lyF666 (forward) 5’-ACA GTC CTT CCC TTT TAT GAG CT-3’

lyR811 (reverse) 5’-AGA TAG AAC ATA ATG GAA ATG GGC T-3’
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Supplemental Fig. 1: Consensus tree using a strict molecular clock and the Midwest clade unconstrained. Node values

represent posterior probabilities calculated from eighteen million total trees. Red taxa represent Midwest samples and black taxa

Atlantic samples.


