Medical Director, the Altshuler Center for Education & Research, Metrocare Services; and The Nancy and Ray L. Hunt Chair in Crisis Psychiatry and Professor of Psychiatry, The University of Texas Medical Center, Dallas, Texas
Introduction: After all large-scale disasters multiple papers are published describing the shortcomings of the triage methods utilized. This paper uses medical provider input to help describe attributes and patient characteristics that impact triage decisions.
Methods: A survey distributed electronically to medical providers with and without disaster experience. Questions asked included what disaster experiences they had, and to rank six attributes in order of importance regarding triage.
Results: 403 unique completed surveys were analyzed. 92% practiced a structural triage approach with the rest reporting they used “gestalt”.(gut feeling) Twelve per cent were identified as having placed patients in an expectant category during triage. Respiratory status, ability to speak, perfusion/pulse were all ranked in the top three. Gut feeling regardless of statistical analysis was fourth. Supplies were ranked in the top four when analyzed for those who had placed patients in the expectant category.
Conclusion: Primary triage decisions in a mass casualty scenario are multifactorial and encompass patient mobility, life saving interventions, situational instincts, and logistics.
A mass casualty incident (MCI) is defined as an event which generates more patients at one time than locally available resources can manage using routine procedures.
Primary triage occurs at the first contact with the EMS medical personnel at which point victims are assigned an acuity level based on injury severity. Secondary triage, or a reevaluation of the victim’s condition after initial medical care, may also occur at the scene of the MCI following EMS interventions or during transport to an emergency department or secondary collection station.
To date, no single triage tool algorithm can demonstrate sufficient scientific evidence to justify national adoption. In 2006 the National Association of EMS Physicians (NAEMSP) and the Centers for Disease Control and Prevention (CDC) funded the SALT workgroup. The goal was to exam published triage systems and make recommendations based on available science for the adoption of one standard mass casualty triage system. The initial result of the workgroup effort showed that there was no published triage system that could be adopted. Secondary outcomes were two fold; the first was the development a new triage system, the Sort-Assess-Lifesaving Interventions-Treatment/Triage (SALT). This a non-proprietary free system developed from available research, with widely accepted best practices of existing mass triage systems, and consensus opinion from the workgroup. The second outcome, because of resistance from local, state and federal agencies to change current triage practices which, would allow interoperability among existing triage tool algorithms, the SALT workgroup, developed the Model Uniform Core Criteria (MUCC) for Mass Casualty Triage. The MUCC consists of 24 criteria of recommended elements of a MCI triage system (Table 1).
The criteria, if adopted into existing triage systems, would allow more for uniformity and interoperability between EMS responders from different jurisdictions upon arrival at an MCI site. As of 2011, 15 of the 24 MUCC essential elements are being used by existing triage systems; SALT is totally compliant with all 24 criteria.
In recognition that current classification systems may not be accurate enough or properly mitigate subjectivity, several studies including those by ethicists and critical care specialists have suggested that, due to social, medical, and logistical variables, that only an experienced provider or a triage team approach should be utilized during the most difficult triage decisions.
To better understand both the reactive and situational awareness factors influencing the primary triage decision-making process among pre-hospital responders, both experienced and not, this study was designed to investigate and analyze those factors that actual medical providers during MCIs perceived that directly and indirectly impacted and influenced how their primary triage priority decisions were processed.
To evaluate how triage decisions are initially processed, this study distributed an electronic survey to EMS and pre-hospital medical providers to help identify and rank the factors that influence primary triage decisions made by those with and without disaster experience. The survey questionnaire was designed by the authors, in English, to ascertain what attributes healthcare workers value and utilize when evaluating a patient for triage and treatment priority. The initial survey was piloted with a small sample of ten healthcare workers who work in an academically affiliated emergency department and have had previous disaster response experience. Based upon the feedback received, the final survey instrument was revised and the modified questions were entered into SurveyMonkey®. The survey was available on-line for 2 months (April-May 2010). The survey was then distributed electronically via a variety of methods: personal email addresses to disaster responders, emergency medicine and disaster listservs, and a hyperlink on a medical website frequented by prehospital EMS medical professionals (https://www.jems.com/articles/2010/05/mci-triage-techniques-survey.html). Respondents were not provided any financial or other incentives for participation. The survey study received approval by our hospital’s institutional review board prior to the start of data collection. Surveys that were not completed in their entirety were excluded from the final analysis.
The introductory paragraph described the intent of the survey, provided assurance of anonymity, and indicated that the approximate time to complete the survey would be less than 20 minutes (this was based on Beta testing of the survey on SurveyMonkey®). By survey design, all questions were required to be answered and the respondent could not advance without answering; The only exception was for specific stand-alone questions asking for opinion-based write-ins, if these were not answered, the respondent’s survey was still included.
General information required, aside from date of birth and gender included:
Primary professional role (e.g., physician, nurse, EMT (emergency medical technician, Paramedic) Medical specialty (e.g., emergency medicine, prehospital care) Years in medical profession (dichotomized as 10 or fewer years vs. >10 years) Disaster training if any (military, NDLS, ARC, FEMA, decontamination, CDP-Noble, or other) Triage system used in both non-disaster and disaster practice (ESI, CDP-Noble, MASS, SAVE, START, SALT, STM informal “gut feeling”, or other) Disaster triage experience (yes/no) Experience of triaging a “live” patient to an expectant category (yes/no) Specific disaster deployments if applicable
Patient attributes contributing to triage placement: Six patient and disaster attributes were to be ranked in the order of importance to the respondent (1-6 with 1 being the most important); to help that would determine the preferred ranking of these attributes by the respondent.
Ability of the patient to speak to you Age Gut feeling, by the responder performing triage, of the severity of injury Perfusion-peripheral pulse Respiratory status Supplies or resource availability
In addition, for those who claim prior disaster response experience, a comment box was added to allow for additional observations to be added besides the six listed attributes and/or factors that might influence the triage priority of patients.
A total of 495 surveys were returned, with 92 deemed incomplete and thusly excluded from data analysis. The 403 completed surveys were analyzed using SAS 9.3 for Windows. Descriptive findings are presented as numbers, proportions, means, frequencies, and standard deviations. Respondents, for further analysis, were classified into three groups based on their disaster triage experience: no disaster triage experience (
Fifty three percent of the 403 respondents were pre-hospital providers (Table 2).
Nearly all indicated that they practiced a structured triage approach (i.e., START, MASS, SAVE, STM, ESI) with 8% (32/403) reporting that they utilized an informal “gut feeling” triage methodology. The
The mean (SD) ranking of each of the six-triage factors by the three experience groups is displayed in Figure 1.
‘Respiratory status, ability to speak, perfusion/pulse, and gut feeling’ factors were ranked in the top four by the majority of the 403 respondents. The mean rankings for five of the six variables (all but ‘gut feeling’) differed by experience groups and were all statistically significant depending on disaster experience (Table 3).
Though there were slight differences in the order of ranking, both groups had the same top and bottom three criteria choices with ‘supplies and age’ showing strong significance in their ranking placement differences. Further analysis with a series of nonparametric Wilcoxon tests comparing the factor rankings across each of the disaster experience group pairs found the following significant between-group comparisons: the
The
Surveys are not strong science, with a sampling bias in this case due to the use of specific and limited access listservs, personal email lists, and web site visit. The results were analyzed as professionally pooled and therefore might be skewed toward the larger numbers of physicians, EMTs, and paramedics among the EMS providers surveyed. The electronic survey limited the pool of respondents to those willing and able to use and access the survey using a computer. The true potential response rate is unknown as the actual number of people who received an invitation via email list or listserv is unknown. The use of a convenience sample, such as we used, did not allow for us to have any control over who chose to respond. It is not an ideal method of gathering data, but in this case, it allowed for the survey to be distributed to a much larger geographic population to give a better sense of the triage provider population at large and was not cost prohibitive, as we only had to pay for the SurveyMonkey® annual fee of $400 U.S.. In addition, the top three ranked attributes (airway, circulation, and neurological status) are seen in START triage, possibly skewing their priority ranking due to the Hawthorne affect, where participants change behavior because they are aware of being observed. Moreover, the survey did not inquire whether triage decisions were made individually, or with assistance such as a team and this triage aspect will be included in subsequent studies.
Only in a perfect world would the ideal MCI triage system exist that accurately identified each casualty by severity and type of injury/illness, ensures that victims received the proper treatment and transport prioritization, and are delivered to appropriate medical care quickly and efficiently. Admittedly, in every mass casualty event patients who are able to leave the scene often do so often prior to EMS arrival. Those remaining are either dead, need an intervention to save their life, are still on scene because they cannot ambulate, or are rending bystander medical assistance; as was witnessed during the Boston Marathon bombing. Those victims left on scene, as organized first responders arrive, are evaluated, and often moved to a gathering location where more medical supplies or shelter is available (i.e. treatment tent in the Boston Marathon, I-10 causeway, Louis Armstrong international airport). It is here that transportation and other logistical considerations become additional factors that may impact triage decisions, all of which are an integral part of pre-hospital decisions. Interestingly, aside from SALT, no popular triage algorithm discusses patient movement, transport, and logistics.
Ideally, triage decisions, made without emotional input or bias, should be able to identify those victims likely to survive if taken to definitive care. However, the ranking of victims into severity and priority treatment categories makes triage dynamic and, depending on numerous external variables, can be an emotive activity that might skew priority categories, possibly introducing bias, leading to either under triage or over triage, which, as mentioned earlier, can cause an increase in mortality. Recently, Cross and Cicero compared six different triage systems and found that none worked well for every event with most resulting in over triage.
Admittedly, triage is a fluid and dynamic process; it has multiple variables influencing the decision maker and should be adaptable to a myriad of situations. Most triage criteria endorsed by the American College of Surgeons, Emergency Nursing Association, and the American College of Emergency Physicians use a combination of physiological, anatomical, mechanism of injury, and special considerations categories to determine severity categorization.
The purpose of this survey was to query practicing field experts and identify factors that for them affect their triage category placement of patients. The assumption made is that medical providers with practical experience in triage situations will prioritize different attributes for the sorting of patients compared to those providers with no disaster experience. These findings in turn, could provide more attribute weighting of the factors used create a more accurate triage algorithm. For example, in this study, the top ranked categories regardless of experience level were ‘cardiovascular’ and ‘neurological’ with those respondents with disaster experience placing a higher value on the ability of the patient to ‘speak’ than on the ‘cardiovascular’ criteria. This suggests that brain perfusion to the experienced triage provider is considered a good indicator of injury severity.
After the physiological attributes, in our rankings, ‘Gut instinct' ranked forth, regardless of disaster experience level with 8% reporting, that they used it as their primary form of triage guidance. Instinct or gut instinct is related to experience, which is a part of expert knowledge, and is very effective in cases of complex decisions such as triage.
Supplies ranked 5th amongst the 403 factors analyzed, in toto, was found to rank in the top three in 68% of responses when subset analysis was performed on those claiming prior disaster experience. Other than being used in the SACCO scoring system, this factor is not part of the most popular triage algorithm decision trees, but is part of the MUCC criteria and SALT system.
This document supports the MUCC, as it provides an additional framework for the development of local and adaptable triage algorithms that include resource availability, sorting, lifesaving interventions, and individual patient assessment endorsing five triage categories. From the MUCC came the resulting CDC endorsed SALT triage (Figure 3)
as an example of a disaster triage algorithm and is presently taught as part of the National Disaster Life Support (NDLS) course series. Triage is a fluid and dynamic process; it has multiple variables influencing the decision maker and should be adaptable to a myriad of situations
Based upon this survey analysis, respondents both with and without direct disaster triage experience identified and ranked triage attributes that support the MUCC guidelines. What appears to best support a balanced disaster mass casualty triage system and considered the most important factors among the surveyed respondents are ‘neurological/cardiovascular’ condition, ‘resource availability’, and the personal attribute of ‘gut instinct’. In addition, decision making in primary triage of a MCI scenario is multifactorial and encompasses life saving interventions, patient mobility, situational instincts and logistics all considered as critical components of a triage scheme that needs more study and analysis. Consensus places experience during MCIs as very important. Based on the success of this survey, the designed electronic survey tool is considered reliable for a second stage international EMS qualitative analysis study of factors influencing primary triage decisions.
The authors have declared that no competing interests exist.
All relevant data are available within the paper.
ARC: American Red Cross
CDP-Noble: Center for Domestic Preparedness-Noble Training Center
ESI: Emergency Severity Index
FEMA: Federal Emergency Management Agency
MASS: Move Assess, Sort, Send
NDLS: National Disaster Life Support
SALT: Sort, Assess, Lifesaving Interventions, Treatment/Transport
SAVE: Secondary Assessment of Victim Endpoint
START: Simple Triage and Rapid Treatment
STM: Sacco Triage Method