Introduction: Flooding is a common natural disaster affecting 77.8 million people and claiming the lives of 4,731 people globally in 2016. During times of flood, drowning is a leading cause of death. Flooding is a known risk factor for river drowning in Australia. With little known about river usage in Australia, this study aimed to examine the links between person demographics and self-reported participation in two flood-related behaviours, driving through floodwaters and swimming in a flooded river. Methods: A self-reported questionnaire was administered to adult river users at four high-risk river drowning locations; Alligator Creek, Townsville, Queensland; Murrumbidgee River, Wagga Wagga, New South Wales; Murray River, Albury, New South Wales; and Hawkesbury River, Windsor, New South Wales. Univariate and chi square analysis was undertaken with a 95% confidence interval (p<0.05). All river users surveyed, were also breathalysed to record an estimate of their blood alcohol content (BAC) on their expired breath. Results: 688 river users responded to the questionnaire; 676 (98.3%) answered the driving question and 674 (98.0%) answered the swimming in floodwaters questions. Of the respondents, 35.7% stated they had driven through floodwater and 18.7% had swum in a flooded river. Males were more likely (p<0.001) to report having undertaken both activities. Australian-born respondents were more likely to report having driven through floodwaters (p=0.006). Those aged 18-24 years old and those residing in outer regional areas were more likely (p<0.001) to have swum in a flooded river. Those who self-reported participating in both driving through floodwaters (p=0.001) and swimming in a flooded river (p<0.001) were significantly more likely to record contributory levels of alcohol (i.e. a BAC ≥0.05%) when breathalysed at the river. Discussion: Ensuring the safe movement of people during floods is difficult, particularly for those living in regional Australia, due in part to long distances travelled and reduced investment in infrastructure such as bridges. With males and females equally exposed, more effective prevention strategies must target both sexes and may include improved education on when it is safe to drive through (low depth, still water, stable road base) and when it is not (e.g. deep water, moving water and unstable road base). This study identified one in five respondents had swum in a flooded river, most commonly young people aged 18-24 years, with participants signficantly more likely to have recorded contributory levels of alcohol when breathalysed. Further research should examine the reasons behind participation in this behaviour, including the role of alcohol. Conclusion: Preventing drowning in floodwaters is an international challenge, made more difficult by people driving through or swimming in floodwaters. Strategies for driving through floodwaters should educate both males and females on when it is safe to drive through floodwaters and when it is not. Further research is required to improve knowledge of the poorly understood behaviour of swimming in flooded rivers.
Author Profile
Recent Posts
Introduction: Globally, flooding is the most common of all natural disasters and drowning is the leading cause of death during floods. In Australia, rivers are the most common location of drowning and experience flooding on a regular basis.
Methods: A cross-sectional, total population audit of all known unintentional river flood related fatal drownings in Australia between 1-July-2002 and 30-June-2012 was conducted to identify trends and causal factors.
Results: There were 129 (16.8%) deaths involving river flooding, representing a crude drowning rate of 0.06 per 100,000 people per annum. Half (55.8%) were due to slow onset flooding, 27.1% flash flooding and the type of flooding was unknown in 17.1% of cases. Those at an increased risk were males, children, driving (non-aquatic transport) and victims who were swept away (p<0.01). When compared to drownings in major cities, people in remote and very remote locations were 79.6 and 229.1 times respectively more likely to drown in river floods. Common causal factors for falls into flooded rivers included being alone and a blood alcohol content ≥0.05% (for adults). Non-aquatic transport incident victims were commonly the drivers of four wheel drive vehicles and were alone in the car, whilst attempting to reach their own home or a friend’s.
Discussion: Flood related river drownings are preventable. Strategies for prevention must target causal factors such as being alone, influence of alcohol, type/size of vehicle, and intended destination. Strategies to be explored and evaluated include effective signage, early warning systems, alternate routes and public awareness for drivers.
Background: The exposure of people and infrastructure to flood and storm related disasters across the world is increasing faster than vulnerability is decreasing. For people with non-communicable diseases this presents a significant risk as traditionally the focus of disaster management systems has been on immediate trauma and communicable diseases. This focus must now be expanded to include the management of non-communicable diseases because these conditions are generating the bulk of ill health, disability and premature death around the globe. When public health service infrastructure is destroyed or damaged access to treatment and care is severely jeopardised, resulting in an increased risk of non-communicable disease exacerbation or even death. This research proposes disaster responders, coordinators and government officials are vital assets to mitigate and eventually prevent these problems from being exacerbated during a disaster. This is due to their role in supporting the public health service infrastructure required to maximise treatment and care for people with non-communicable diseases. By focusing on the disaster cycle as a template, and on mitigation and prevention phases in particular, these actions and activities performed by disaster service responders will lead to overall improved preparedness, response, recovery and rehabilitation phases.
Methods: Data were collected via 32 interviews and one focus group (eight participants) between March 2014 and August 2015 (total of 40 participants). The research was conducted in the State of Queensland, Australia, with disaster service providers. The analysis included the phases of: organizing data; data description; data classification; and interpretation.
Results: The research found a relationship between the impact of a disaster on public health service infrastructure, and increased health risks for people with non-communicable diseases. Mitigation strategies were described for all phases of the disaster cycle impacting public health service infrastructure. Specific measures include: increasing the use of telemedicine; preplanning with medical suppliers; effective town planning; health professionals visiting evacuation centers; evacuation centers having power for medical equipment; hubs for treatment and care after a disaster; evacuation of high risk people prior to disaster; mapping people at risk by non-communicable disease; and a mechanism for sharing information between agencies. A common theme from the participants was that having accurate and easily accessible data on people with non-communicable diseases would allow disaster service providers to adequately prepare for and respond to a disaster.
Conclusions: Disaster service providers can play a vital role in reducing the risk of disaster exacerbated non-communicable diseases through public health service infrastructure resilience. They are often employed in communities where disasters occur and are therefore best-placed to lead implementation of the mitigation strategies identified in this research. To sustainably implement the mitigation strategies they will need to become integrated into effective performance and monitoring of the disaster response and health sector during non-disaster periods. For this to occur, the strategies should be integrated into business and strategic plans. Achieving this will help implement the Sendia Framework for Disaster Risk Reduction 2015-2030 and, most importantly, help protect the health of people with non-communicable diseases before, during and after a disaster.
Introduction: Over the last quarter of a century the frequency of natural disasters and the burden of non-communicable diseases (NCD) across the globe have been increasing. For individuals susceptible to, or chronically experiencing, NCDs this has become a significant risk. Disasters jeopardize access to essential treatment, care, equipment, water and food, which can result in an exacerbation of existing conditions or even preventable death. Consequently, there is a need to expand the public health focus of disaster management to include NCDs. To provide a platform for this to occur, this article presents the results from a systematic review that identifies and describes the impact of cyclone, flood and storm related disasters on those susceptible to, or experiencing, NCDs. The NCDs researched were: cardiovascular diseases; cancers; chronic respiratory diseases; and diabetes.
Methods: Four electronic publication databases were searched with a date limit of 31 December 2014. The data was analyzed through an aggregation of individual papers to create an overall data description. The data was then grouped by disease to describe the impact of a disaster on treatment management, exacerbation, and health care of people with NCDs. The PRISMA checklist was used to guide presentation of the research.
Results: The review identified 48 relevant articles. All studies represented developed country data. Disasters interrupt treatment management and overall care for people with NCDs, which results in an increased risk of exacerbation of their illness or even death. The interruption may be caused by a range of factors, such as damaged transport routes, reduced health services, loss of power and evacuations. The health impact varied according to the NCD. For people with chronic respiratory diseases, a disaster increases the risk of acute exacerbation. Meanwhile, for people with cancer, cardiovascular diseases and diabetes there is an increased risk of their illness exacerbating, which can result in death.
Conclusion: Cyclone, flood and storm related disasters impact on treatment management and care for people with NCDs. Possible consequences include exacerbation of illness, complications or even death. There is now a need to expand traditional disaster approaches by public health to incorporate NCDs. This must be guided by the major NCDs identified by the World Health Organization and implemented in-line with the Sendai Framework for Disaster Risk Reduction: 2015-2030. This includes understanding all the factors that influence both direct and indirect (preventable) morbidity and mortality related to NCDs during and after disasters. Once achieved, disaster planners and public health professionals will be in a position to develop and implement effective mitigation strategies.