Author Profile

Joseph D. Ma

Affiliation: UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences

Recent Posts

Thiopurine methyltransferase (TPMT) genotyping to predict myelosuppression risk

Azathioprine (AZA), 6-mercaptopurine (6-MP), and thioguanine (TG) are thiopurine drugs. These agents are indicated for the treatment of various diseases including hematologic malignancies, inflammatory bowel disease (IBD), rheumatoid arthritis, and as immunosuppressants in solid organ transplants. Thiopurine drugs are metabolized, in part, by thiopurine methyltransferase (TPMT). TPMT displays genetic polymorphism resulting in null or decreased enzyme activity. At least 20 polymorphisms have been identified, of which, TPMT *2, *3A, *3B, *3C, and *4 are the most commonly studied. These polymorphisms have been associated with increased myelosuppression risk. TPMT genotyping may be useful to predict this risk.

Interleukin-28B genotype testing to determine response to the combination of pegylated-interferon and ribavirin for the treatment of hepatitis C virus

Hepatitis C virus (HCV) is a bloodborne infection that is one of the leading causes of liver disease. If left untreated, HCV can lead to cirrhosis, hepatocellular carcinoma, and death. The current standard of care for HCV is a combination of pegylated-interferon (peg-IFN) and ribavirin (RBV) in which the goal of treatment is to decrease complications and death due to HCV. HCV displays genetic polymorphism, where patients with HCV genotype 1 may have higher viral replication rates and are less likely to respond to treatment. These patients require a longer duration of treatment and a higher RBV dose. The interleukin (IL) 28B genotype test is associated with a sustained virologic response (SVR), defined as an undetectable HCV ribonucleic acid (RNA) upon completion of treatment and 24 weeks thereafter.

HLA-B*5701 testing to predict abacavir hypersensitivity

Abacavir is a nucleoside reverse transcriptase inhibitor used for combination antiretroviral therapy for treating human immunodeficiency virus (HIV) infection. An adverse effect from abacavir is a treatment-limiting hypersensitivity reaction, which can be severe and potentially life-threatening. Abacavir-induced hypersensitivity reaction has been associated with the presence of the major histocompatibility complex class I allele HLA-B*5701. A screening test for the HLA-B*5701 allele can assist clinicians to identify patients who are at risk of developing a hypersensitivity reaction to abacavir.