Introduction: Although many studies have investigated the probability of Ebola virus disease (EVD) outbreaks while other studies have simulated the size and speed of EVD outbreaks, few have investigated the environmental and population-level predictors of Ebola transmission once an outbreak is underway. Identifying strong predictors of transmission could help guide and target limited public health resources during an EVD outbreak. We examined several environmental and population-level demographic predictors of EVD risk from the West African epidemic. Methods: We obtained district-level estimates from the World Health Organization EVD case data, demographic indicators obtained from the Demographic and Health surveys, and satellite-derived temperature, rainfall, and land cover estimates. A Bayesian hierarchical Poisson model was used to estimate EVD risk and to evaluate the spatial variability explained by the selected predictors. Results: We found that districts had greater risk of EVD with increasing proportion of households not possessing a radio (RR 2.79, 0.90-8.78; RR 4.23, 1.16-15.93), increasing rainfall (RR 2.18; 0.66-7.20; 5.34, 1.20-23.90), and urban land cover (RR 4.87, 1.56-15.40; RR 5.74, 1.68-19.67). Discussion: The finding of radio ownership and reduced EVD transmission risk suggests that the use of radio messaging for control and prevention purposes may have been crucial in reducing the EVD transmission risk in certain districts, although this association requires further study. Future research should examine the etiologic relationships between the identified risk factors and human-to-human transmission of EVD with a focus on factors related to population mobility and healthcare accessibility, which are critical features of epidemic propagation and control.
In this commentary, we consider the relationship between early outbreak changes in the observed reproductive number of Ebola in West Africa and various media reported interventions and aggravating events. We find that media reports of interventions that provided education, minimized contact, or strengthened healthcare were typically followed by sustained transmission reductions in both Sierra Leone and Liberia. Meanwhile, media reports of aggravating events generally preceded temporary transmission increases in both countries. Given these preliminary findings, we conclude that media reported events could potentially be incorporated into future epidemic modeling efforts to improve mid-outbreak case projections.
Since Ebola Virus Disease (EVD) was first identified in 1976 in what is now the Democratic Republic of Congo, and despite the numerous outbreaks recorded to date, rarely has an epidemic origin been identified. Indeed, among the twenty-one most documented EVD outbreaks in Africa, an index case has been identified four times, and hypothesized in only two other instances. The initial steps of emergence and spread of a virus are critical in the development of a potential outbreak and need to be thoroughly dissected and understood in order to improve on preventative strategies. In the current West African outbreak of EVD, a unique index case has been identified, pinpointing the geographical origin of the epidemic in Guinea. Herein, we provide an accounting of events that serve as the footprint of EVD emergence in Sierra Leone and a road map for risk mitigation fueled by lessons learned.
Background: An EVD outbreak may reduce life expectancy directly (due to high mortality among EVD cases) and indirectly (e.g., due to lower utilization of healthcare and subsequent increases in non-EVD mortality). In this paper, we investigated the direct effects of EVD on life expectancy in Liberia, Sierra Leone and Guinea (LSLG thereafter).
Methods: We used data on EVD cases and deaths published in situation reports by the World Health Organization (WHO), as well as data on the age of EVD cases reported from patient datasets. We used data on non-EVD mortality from the most recent life tables published prior to the EVD outbreak. We then formulated three scenarios based on hypotheses about a) the extent of under-reporting of EVD cases and b) the EVD case fatality ratio. For each scenario, we re-estimated the number of EVD deaths in LSLG and we applied standard life table techniques to calculate life expectancy.
Results: In Liberia, possible reductions in life expectancy resulting from EVD deaths ranged from 1.63 year (low EVD scenario) to 5.56 years (high EVD scenario), whereas in Sierra Leone, possible life expectancy declines ranged from 1.38 to 5.10 years. In Guinea, the direct effects of EVD on life expectancy were more limited (<1.20 year).
Conclusions: Our high EVD scenario suggests that, due to EVD deaths, life expectancy may have declined in Liberia and Sierra Leone to levels these two countries had not experienced since 2001-2003, i.e., approximately the end of their civil wars. The total effects of EVD on life expectancy may however be larger due to possible concomitant increases in non-EVD mortality during the outbreak.