Introduction: Although many studies have investigated the probability of Ebola virus disease (EVD) outbreaks while other studies have simulated the size and speed of EVD outbreaks, few have investigated the environmental and population-level predictors of Ebola transmission once an outbreak is underway. Identifying strong predictors of transmission could help guide and target limited public health resources during an EVD outbreak. We examined several environmental and population-level demographic predictors of EVD risk from the West African epidemic. Methods: We obtained district-level estimates from the World Health Organization EVD case data, demographic indicators obtained from the Demographic and Health surveys, and satellite-derived temperature, rainfall, and land cover estimates. A Bayesian hierarchical Poisson model was used to estimate EVD risk and to evaluate the spatial variability explained by the selected predictors. Results: We found that districts had greater risk of EVD with increasing proportion of households not possessing a radio (RR 2.79, 0.90-8.78; RR 4.23, 1.16-15.93), increasing rainfall (RR 2.18; 0.66-7.20; 5.34, 1.20-23.90), and urban land cover (RR 4.87, 1.56-15.40; RR 5.74, 1.68-19.67). Discussion: The finding of radio ownership and reduced EVD transmission risk suggests that the use of radio messaging for control and prevention purposes may have been crucial in reducing the EVD transmission risk in certain districts, although this association requires further study. Future research should examine the etiologic relationships between the identified risk factors and human-to-human transmission of EVD with a focus on factors related to population mobility and healthcare accessibility, which are critical features of epidemic propagation and control.
We have identified environmental and demographic variables, available in January, that predict the relative magnitude and spatial distribution of West Nile virus (WNV) for the following summer. The yearly magnitude and spatial distribution for WNV incidence in humans in the United States (US) have varied wildly in the past decade. Mosquito control measures are expensive and having better estimates of the expected relative size of a future WNV outbreak can help in planning for the mitigation efforts and costs. West Nile virus is spread primarily between mosquitoes and birds; humans are an incidental host. Previous efforts have demonstrated a strong correlation between environmental factors and the incidence of WNV. A predictive model for human cases must include both the environmental factors for the mosquito-bird epidemic and an anthropological model for the risk of humans being bitten by a mosquito. Using weather data and demographic data available in January for every county in the US, we use logistic regression analysis to predict the probability that the county will have at least one WNV case the following summer. We validate our approach and the spatial and temporal WNV incidence in the US from 2005 to 2013. The methodology was applied to forecast the 2014 WNV incidence in late January 2014. We find the most significant predictors for a county to have a case of WNV to be the mean minimum temperature in January, the deviation of this minimum temperature from the expected minimum temperature, the total population of the county, publicly available samples of local bird populations, and if the county had a case of WNV the previous year.
We have identified environmental and demographic variables, available in January, that predict the relative magnitude and spatial distribution of West Nile virus (WNV) for the following summer. The yearly magnitude and spatial distribution for WNV incidence in humans in the United States (US) have varied wildly in the past decade. Mosquito control measures are expensive and having better estimates of the expected relative size of a future WNV outbreak can help in planning for the mitigation efforts and costs. West Nile virus is spread primarily between mosquitoes and birds; humans are an incidental host. Previous efforts have demonstrated a strong correlation between environmental factors and the incidence of WNV. A predictive model for human cases must include both the environmental factors for the mosquito-bird epidemic and an anthropological model for the risk of humans being bitten by a mosquito. Using weather data and demographic data available in January for every county in the US, we use logistic regression analysis to predict the probability that the county will have at least one WNV case the following summer. We validate our approach and the spatial and temporal WNV incidence in the US from 2005 to 2013. The methodology was applied to forecast the 2014 WNV incidence in late January 2014. We find the most significant predictors for a county to have a case of WNV to be the mean minimum temperature in January, the deviation of this minimum temperature from the expected minimum temperature, the total population of the county, publicly available samples of local bird populations, and if the county had a case of WNV the previous year.