Diffusion tensor imaging (DTI) has shown microstructural abnormalities in patients with Huntington’s Disease (HD) and work is underway to characterise how these abnormalities change with disease progression. Using methods that will be applied in longitudinal research, we sought to establish the reliability of DTI in early HD patients and controls. Test-retest reliability, quantified using the intraclass correlation coefficient (ICC), was assessed using region-of-interest (ROI)-based white matter atlas and voxelwise approaches on repeat scan data from 22 participants (10 early HD, 12 controls). T1 data was used to generate further ROIs for analysis in a reduced sample of 18 participants. The results suggest that fractional anisotropy (FA) and other diffusivity metrics are generally highly reliable, with ICCs indicating considerably lower within-subject compared to between-subject variability in both HD patients and controls. Where ICC was low, particularly for the diffusivity measures in the caudate and putamen, this was partly influenced by outliers. The analysis suggests that the specific DTI methods used here are appropriate for cross-sectional research in HD, and give confidence that they can also be applied longitudinally, although this requires further investigation. An important caveat for DTI studies is that test-retest reliability may not be evenly distributed throughout the brain whereby highly anisotropic white matter regions tended to show lower relative within-subject variability than other white or grey matter regions.
In diffusion tensor imaging (DTI), an improvement in the signal-to-noise ratio (SNR) of the fractional anisotropy (FA) maps can be obtained when the number of recorded gradient directions (GD) is increased. Vice versa, elimination of motion-corrupted or noisy GD leads to a more accurate characterization of the diffusion tensor. We previously suggest a slice-wise method for artifact detection in FA maps. This current study applies this approach to a cohort of 18 premanifest Huntington’s disease (pHD) subjects and 23 controls. By 2-D voxelwise statistical comparison of original FA-maps and FA-maps with a reduced number of GD, the effect of eliminating GD that were affected by motion was demonstrated.
We present an evaluation metric that allows to test if the computed FA-maps (with a reduced number of GD) still reflect a “true” FA-map, as defined by simulations in the control sample. Furthermore, we investigated if omitting data volumes affected by motion in the pHD cohort could lead to an increased SNR in the resulting FA-maps.
A high agreement between original FA maps (with all GD) and corrected FA maps (i.e. without GD corrupted by motion) were observed even for numbers of eliminated GD up to 13. Even in one data set in which 46 GD had to be eliminated, the results showed a moderate agreement.
Movement artifacts and other sources of noise are a matter of concern particularly in the neuroimaging research of movement disorders such as Huntington’s disease (HD). Using diffusion weighted imaging (DWI) and fractional anisotropy (FA) as a compound marker of white matter integrity, we investigated the effect of movement on HD specific changes in magnetic resonance imaging (MRI) data and how post hoc compensation for it affects the MRI results. To this end, we studied by 3T MRI: 18 early affected, 22 premanifest gene-positive subjects, 23 healthy controls (50 slices of 2.3 mm thickness per volume, 64 diffusion-weighted directions (b = 1000 s/mm2), 8 minimal diffusion-weighting (b = 100 s/mm2)); and by 1.5 T imaging: 29 premanifest HD, 30 controls (40 axial slices of 2.3 mm thickness per volume, 61 diffusion-weighted directions (b = 1000 s/mm2), minimal diffusion-weighting (b = 100 s/mm2)). An outlier based method was developed to identify movement and other sources of noise by comparing the index DWI direction against a weighted average computed from all other directions of the same subject. No significant differences were observed when separately comparing each group of patients with and without removal of DWI volumes that contained artifacts. In line with previous DWI-based studies, decreased FA in the corpus callosum and increased FA around the basal ganglia were observed when premanifest mutation carriers and early affected patients were compared with healthy controls. These findings demonstrate the robustness of the FA value in the presence of movement and thus encourage multi-center imaging studies in HD.