Huntington’s disease (HD), an autosomal dominant neurodegenerative syndrome, has a world-wide distribution. An estimated 2.5-10/100,000 people of European ancestry are affected with HD, while the Asian populations have lower prevalence (0.6-3.8/100,000). The epidemiology of HD is not well described in India, and the distribution of the pathogenic CAG expansion, and the associated haplotype, in this population needs to be better understood. This study demonstrates a distribution of CAG repeats, at the HTT locus, comparable to the European population in both normal and HD affected chromosomes. Further, we provide an evidence for similarity of the HD halpotype in Indian sample to the European HD haplogroup.
Modifiers of mutant huntingtin aggregation
functional conservation of C. elegans-modifiers of polyglutamine aggregation
Protein aggregation is a common hallmark of a number of age-related neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and polyglutamine-expansion disorders such as Huntington’s disease, but how aggregation-prone proteins lead to pathology is not known. Using a genome-wide RNAi screen in a C. elegans-model for polyglutamine aggregation, we previously identified 186 genes that suppress aggregation. Using an RNAi screen for human orthologs of these genes, we here present 26 human genes that suppress aggregation of mutant huntingtin in a human cell line. Among these are genes that have not been previously linked to mutant huntingtin aggregation. They include those encoding eukaryotic translation initiation, elongation and translation factors, and genes that have been previously associated with other neurodegenerative diseases, like the ATP-ase family gene 3-like 2 (AFG3L2) and ubiquitin-like modifier activating enzyme 1 (UBA1). Unravelling the role of these genes will broaden our understanding of the pathogenesis of Huntington’s disease.
Several candidate modifier genes which, in addition to the pathogenic CAG repeat expansion, influence the age at onset (AO) in Huntington disease (HD) have already been described. The aim of this study was to replicate association of variations in the N-methyl D-aspartate receptor subtype genes GRIN2A and GRIN2B in the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). The analyses did replicate the association reported between the GRIN2A rs2650427 variation and AO in the entire cohort. Yet, when subjects were stratified by AO subtypes, we found nominally significant evidence for an association of the GRIN2A rs1969060 variation and the GRIN2B rs1806201 variation. These findings further implicate the N-methyl D-aspartate receptor subtype genes as loci containing variation associated with AO in HD.