Huntington’s disease (HD) is a neurodegenerative illness, where selective neuronal loss in the brain caused by expression of mutant huntingtin protein leads to motor dysfunction and cognitive decline in addition to peripheral metabolic changes. In this study we confirm our previous observation of impairment of lactate-based hepatic gluconeogenesis in the transgenic HD mouse model R6/2 and determine that the defect manifests very early and progresses in severity with disease development, indicating a potential to explore this defect in a biomarker context. Moreover, R6/2 animals displayed lower blood glucose levels during prolonged fasting compared to wild type animals.
Huntington’s disease (HD) is a late-onset, slowly progressing neurodegenerative disorder caused by an expansion of glutamine repeats. The YAC128 mouse model has been widely used to study the progression of HD symptoms, but little is known about synaptic alterations in very old animals. The present experiments examined synaptic properties of striatal medium-sized spiny neurons (MSNs) in 16 month-old YAC128 mice. These mice were crossed with mice expressing enhanced green fluorescent protein (EGFP) under the control of either D1 or D2 dopamine receptor promoters to identify MSNs originating the direct and indirect pathways, respectively. The input-output curves of evoked excitatory postsynaptic currents mediated by activation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or N-methyl-D-aspartate (NMDA) receptors were reduced in MSNs in both pathways. In the presence of DL-threo-β-Benzyloxyaspartic acid (DL-TBOA), a glutamate transporter blocker used to increase activation of extrasynaptic receptors, NMDA receptor-mediated currents displayed altered amplitudes, longer decay times, and greater charge (response areas) in both direct and indirect pathway MSNs in YAC128 mice compared to wildtype controls. Amplitudes were significantly increased, primarily in direct pathway MSNs while normalized areas were significantly increased only in indirect pathway MSNs, suggesting that the two types of MSNs are affected in different ways. It may be that indirect pathway neurons are more susceptible to changes in glutamate transport. Taken together, the present findings demonstrate differential alterations in synaptic versus extrasynaptic NMDA receptors in both direct and indirect pathway MSNs in late HD, which may contribute to the dysfunction and degeneration in both pathways.
Striatal neuronal degeneration and loss is an important feature of human Huntington’s disease (HD). R6/2 HD mice recapitulate many features of human HD including striatal atrophy. While striatal neuronal atrophy and loss is reported in R6/2 HD mice the degree of neuronal loss and the characteristics of cell body atrophy are unclear. We used stereological approaches to estimate whole striatal neuronal numbers and characterize changes in striatal neuronal size distribution. R6/2 HD mice had ~126000 fewer neurons per striatum (~12% decline) at 12 weeks of age than wild-type litter-mates; differences were not present at 5 weeks. Analysis of striatal neuronal numbers per cell body size category revealed declines in neuron numbers in the size ranges 550-1050 µm3 suggesting that larger striatal neurons are more susceptible to atrophy or loss in late stages of disease. R6/2 HD mice have a striatal neuronal loss phenotype. As striatal neuronal loss in human HD is dramatic, neuronal loss in R6/2 striatum provides an important late-stage outcome measure for study of disease modifying interventions
Huntington’s disease (HD), a devastating neurodegenerative disorder caused by a CAG repeat expansion on the HTT gene located on chromosome 4, is associated with a characteristic pattern of progressive cognitive dysfunction known to involve early deficits in executive function. A modified Go/No-go successive discrimination task was designed to assess the type of online response control/executive function known to be disrupted in patients with HD. The present studies show that this simple discrimination assay revealed early and robust deficits in two mouse models of HD, the zQ175 KI mouse (deficits from 28 weeks of age) and the R6/2 mouse, carrying ~240 CAG repeats (deficits from 9 weeks of age). These deficits are not due to gross motor dysfunction in the test animals, but instead appear to measure some inability to inhibit responding in the HD mouse models, suggesting this assay may measure deficits in underlying attentional and/or behavioral inhibition processes. Accordingly, this assay may be well suited to evaluation of simple deficits in cognitive function in mouse HD models, providing a potential platform for preclinical screening.
The genome of the Bacterial Artificial Chromosome (BAC) transgenic mouse model of Huntington’s Disease (BAC HD) contains the 170 kb human HTT locus modified by the addition of exon 1 with 97 mixed CAA-CAG repeats. BAC HD mice present robust behavioral deficits in both the open field and the accelerating rotarod tests, two standard behavioral assays of motor function. BAC HD mice, however, also typically present significantly increased body weights relative to wildtype littermate controls (WT) which potentially confounds the interpretation of any motor deficits associated directly with the effects of mutant huntingtin. In order to evaluate this possible confound of body weight, we directly compared the performance of BAC HD and WT female mice under food restricted versus free feeding conditions in both the open field and rotarod tasks to test the hypothesis that some of the motor deficits observed in this HTT-transgenic mouse line results solely from increased body weight. Our results suggest that the rotarod deficit exhibited by BAC HD mice is modulated by both body weight and non-body weight factors resulting from overexpression of full length mutant Htt. When body weights of WT and BAC HD transgenic mice were normalized using restricted feeding, the deficits exhibited by BAC HD mice on the rotarod task were less marked, but were still significant. Since the rotarod deficit between WT and BAC HD mice is attenuated when body weight is normalized by food restriction, utilization of this task in BAC HD mice during pre-clinical evaluation must be powered accordingly and results carefully considered as therapeutic benefit can result from decreased overall body weight and or motoric improvement that may not be related to body mass. Furthermore, after controlling for body weight differences, the hypoactive phenotype displayed by ad libitum fed BAC HD mice in the open field assay was not observed in the BAC HD mice undergoing food restriction. These findings suggest that assessment of spontaneous locomotor activity, as measured in the open field test, may not be the appropriate behavioral endpoint to evaluate the BAC HD mouse during preclinical evaluation since it appears that the apparent hypoactive phenotype in this model is driven primarily by body weight differences.
Phenotyping with traditional behavioral assays constitutes a major bottleneck in the primary screening, characterization, and validation of genetic mouse models of disease, leading to downstream delays in drug discovery efforts. We present a novel and comprehensive one-stop approach to phenotyping, the PhenoCube™. This system simultaneously captures the cognitive performance, motor activity, and circadian patterns of group-housed mice by use of home-cage operant conditioning modules (IntelliCage) and custom-built computer vision software. We evaluated two different mouse models of Huntington’s Disease (HD), the R6/2 and the BACHD in the PhenoCube™ system. Our results demonstrated that this system can efficiently capture and track alterations in both cognitive performance and locomotor activity patterns associated with these disease models. This work extends our prior demonstration that PhenoCube™ can characterize circadian dysfunction in BACHD mice and shows that this system, with the experimental protocols used, is a sensitive and efficient tool for a first pass high-throughput screening of mouse disease models in general and mouse models of neurodegeneration in particular.
Metabolic dysfunction and mitochondrial involvement are recognised as part of the pathology in Huntington’s Disease (HD). Post-mortem examinations of the striatum from end-stage HD patients have shown a decrease in the in vitro activity of complexes II, III and IV of the electron transport system (ETS). In different models of HD, evidence of enzyme defects have been reported in complex II and complex IV using enzyme assays. However, such assays are highly variable and results have been inconsistent.
We investigated the integrated ETS function ex vivo using a sensitive high-resolution respirometric (HRR) method. The O2 flux in a whole-cell sample combined with the addition of mitochondrial substrates, uncouplers and inhibitors enabled us to accurately quantitate the function of individual mitochondrial complexes in intact mitochondria, while retaining mitochondrial regulation and compensatory mechanisms.
We used HRR to examine the mitochondrial function in striata from 12-week old R6/2 mice expressing exon 1 of human HTT with 130 CAG repeats. A significant reduction in complex II and complex IV flux control ratios was found in the R6/2 mouse striatum at 12 weeks of age compared to controls, confirming previous findings obtained with spectrophotometric enzyme assays.
Pitfalls in the detection of cholesterol in Huntington’s disease models
Technical considerations in the detection of cholesterol in Huntington’s disease samples
Background
Abnormalities in brain cholesterol homeostasis have been reported in Huntington’s disease (HD), an adult-onset neurodegenerative disorder caused by an expansion in the number of CAG repeats in the huntingtin (HTT) gene. However, the results have been contradictory with respect to whether cholesterol levels increase or decrease in HD models. Biochemical and mass spectrometry methods show reduced levels of cholesterol precursors and cholesterol in HD cells and in the brains of several HD animal models. Abnormal brain cholesterol homeostasis was also inferred from studies in HD patients. In contrast, colorimetric and enzymatic methods indicate cholesterol accumulation in HD cells and tissues. Here we used several methods to investigate cholesterol levels in cultured cells in the presence or absence of mutant HTT protein.
Results
Colorimetric and enzymatic methods with low sensitivity gave variable results, whereas results from a sensitive analytical method, gas chromatography-mass spectrometry, were more reliable. Sample preparation, high cell density and cell clonality also influenced the detection of intracellular cholesterol.
Conclusions
Detection of cholesterol in HD samples by colorimetric and enzymatic assays should be supplemented by detection using more sensitive analytical methods. Care must be taken to prepare the sample appropriately. By evaluating lathosterol levels using isotopic dilution mass spectrometry, we confirmed reduced cholesterol biosynthesis in knock-in cells expressing the polyQ mutation in a constitutive or inducible manner.
*Correspondence should be addressed to Elena Cattaneo: [email protected]
Huntington’s disease (HD) is a late-onset progressive neurodegenerative disorder characterised by irrepressible motor dysfunction, cognitive decline and psychiatric disturbances for which there is no effective disease-modifying treatment. The proteolytic cleavage of huntingtin (HTT) to generate N-terminal fragments has been proposed to be a key aspect of HD pathogenesis. In particular, it has been shown that HTT can be cleaved at amino acid 586 by caspase-6 (CASP6) and that prevention of cleavage at this site is neuroprotective and can rescue HD-related phenotypes in YAC transgenic HD mouse models. To determine the role that CASP6 plays in HTT proteolysis, we evaluated the effects of the genetic ablation of Casp6 in the HdhQ150 knock-in mouse model of HD. Here we show that the loss of CASP6 had no effect on the proteolysis of HTT, and did not modify the pattern of N-terminal HTT fragments that are present in the brains of these animals. Furthermore, we show that CASP6 ablation does not influence the steady-state levels of soluble HTT in the brains of presymptomatic mice. Therefore, we conclude that CASP6 is not necessary for HTT proteolysis in the HdhQ150 mouse model of HD, and that targeting CASP6 as a therapeutic strategy should be approached with caution in the context of this complex disease.
* Corresponding author: Gillian P. Bates, Department of Medical and Molecular Genetics, King’s College London School of Medicine, 8th Floor Tower Wing, Guy’s Hospital, London, SE1 9RT, United Kingdom. Phone: +44 20 7188 3722; Fax: +44 20 7188 2585; Email: [email protected]
Stem cell-based treatment for Huntington’s disease (HD) is an expanding field of research. Although various stem cells have been shown to be beneficial in vivo, no long standing clinical effect has been demonstrated. To address this issue, we are developing a stem cell-based therapy designed to improve the microenvironment of the diseased tissue via delivery of neurotrophic factors (NTFs). Previously, we established that bone marrow derived human mesenchymal stem cells (MSCs) can be differentiated using medium based cues into NTF-secreting cells (NTF+ cells) that express astrocytic markers. NTF+ cells were shown to alleviate neurodegeneration symptoms in several disease models in vitro and in vivo, including the model for excitotoxicity.
In the present study, we explored if the timing of intrastriatal transplantation of hNTF+ cells into the R6/2 transgenic mouse model for HD influences motor function and survival. One hundred thousand cells were transplanted bilaterally into the striatum of immune-suppressed mice at 4.5, 5.5 and 6.5 weeks of age.
Contrary to our expectations, early transplantation of NTF+ cells did not improve motor function or overall survival. However, late (6.5 weeks) transplantation resulted in a temporary improvement in motor function and an extension of life span relative to that observed for PBS treated mice.
We conclude that late transplantation of NTF+ cells induces a beneficial effect in this transgenic model for HD. Since no transplanted NTF+ cells could be detected in vivo, we suspect that the temporary nature of the beneficial effect is due to poor survival of transplanted cells. In general, we submit that NTF+ cells should be further evaluated for the therapy of HD.
Apathy, characterized by generally reduced interest in and likelihood to perform goal-directed actions, is a recognized symptom of Huntington’s disease (HD), a devastating neurological disorder caused by a CAG repeat expansion of the Htt gene located on chromosome 4. The present experiments used a modified progressive ratio task that incorporated a fixed-ratio schedule of reinforcement component to assess consummatory behavior, and a progressive-ratio schedule component that required increasing numbers of lever-presses for successive reinforcers (0.01 ml of evaporated milk). The studies revealed an apathetic phenotype in two mouse models of HD, with decreased response rates either overall or only at higher ratio requirements in the progressive-ratio component relative to wild-type controls. Based on the procedure used (within-session fixed- and progressive-ratio components), it is proposed that an observed phenotype can be ascribed either specifically to reduced motivation to work for food reinforcement or more generally to deficits in consummatory behavior. This procedure provides a simple means to assess this type of phenotype in rodents, with issues in consummatory vs. incentive motivation reflected in general alterations in fixed- versus progressive alterations on an escalating-ratio schedules respectively, providing translational measures of the amotivation/apathy construct of the human realm to the homologous construct of incentive motivation in preclinical models of human disease.
Homozygosis for the rd1 mutation in the Pbe6b gene results in the loss of the rod beta-subunit of the cyclic GMP phosphodiesterase and, eventually, of all rod and cone photoreceptors. The R6/2 mouse line is a widely used model of Huntington’s disorder (HD). The original line was made available on a mixed background obtained by crossing, via ovarian transplant, female R6/2 (on a B6CBA mixed background) with male B6CBAF1/J mice. As the CBA/J strain used in the US is homozygous for the rd1 mutation and the breeding scheme does not ensure heterozygosis for the mutation, a significant percentage of the offspring on this mixed background is expected to be homozygous for the rd1 mutation. We investigate here the effect of rd1 homozygosis on motor function and examined the effects of the mutation on the R6/2 phenotype. Homozygosis for the rd1 mutation resulted in increased activity in the open field test and reduced rotarod test performance. In addition, rd1 mutation absence or heterozygosis reduced the differences between the R6/2 and the WT mice. Our recommendation for the neurodegeneration field, and for all mouse studies in general, is to carefully control homozygosis for retinal degeneration mutation, even when using tests of motor function.
Mouse models of Huntington’s disease (HD) were trained to acquire one of two simple instrumental responses (a lever press or a nosepoke) to obtain food reinforcement. Animals from several HD strains revealed apparently progressive deficits in this task, being significantly less able than littermate controls to perform the required responses, at ages where motor function is only mildly affected. These data could provide a simple way to measure learning deficits in these mouse models, likely related to the characteristic pattern of neural damage observed in HD mouse models.
Using the R6/1 mouse model of Huntington disease (HD), we have recently shown that voluntary physical activity was able to correct the depressive-like behaviours exhibited by the HD animals at a pre-motor symptomatic stage of the disease. Using the high performance liquid chromatography system, we have now evaluated the effect of exercise on monoamine metabolism in HD mice. We found that serotonin and its metabolite as well as dopamine and noradrenaline were reduced across several brain regions in female R6/1 animals. Our data also suggest that some of these neurochemical deficits were modulated by physical activity, in a genotype-region dependent manner. These newly identified changes could account for some of the behavioural effects of exercise previously reported in HD mice.