Huntington’s disease (HD) is a late-onset, slowly progressing neurodegenerative disorder caused by an expansion of glutamine repeats. The YAC128 mouse model has been widely used to study the progression of HD symptoms, but little is known about synaptic alterations in very old animals. The present experiments examined synaptic properties of striatal medium-sized spiny neurons (MSNs) in 16 month-old YAC128 mice. These mice were crossed with mice expressing enhanced green fluorescent protein (EGFP) under the control of either D1 or D2 dopamine receptor promoters to identify MSNs originating the direct and indirect pathways, respectively. The input-output curves of evoked excitatory postsynaptic currents mediated by activation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or N-methyl-D-aspartate (NMDA) receptors were reduced in MSNs in both pathways. In the presence of DL-threo-β-Benzyloxyaspartic acid (DL-TBOA), a glutamate transporter blocker used to increase activation of extrasynaptic receptors, NMDA receptor-mediated currents displayed altered amplitudes, longer decay times, and greater charge (response areas) in both direct and indirect pathway MSNs in YAC128 mice compared to wildtype controls. Amplitudes were significantly increased, primarily in direct pathway MSNs while normalized areas were significantly increased only in indirect pathway MSNs, suggesting that the two types of MSNs are affected in different ways. It may be that indirect pathway neurons are more susceptible to changes in glutamate transport. Taken together, the present findings demonstrate differential alterations in synaptic versus extrasynaptic NMDA receptors in both direct and indirect pathway MSNs in late HD, which may contribute to the dysfunction and degeneration in both pathways.
Author Profile
Recent Posts
This report represents a detailed description of experiments designed to replicate and extend the findings of a published study on the effects of treating the R6/2 Huntington’s disease (HD) mouse model with ~300 CAG repeats using the pimelic diphenylamide histone deacetylase (HDAC) inhibitor, HDACi 4b (Thomas et al., 2008). In addition to testing the R6/2 mice, similar experiments examined the effects of the drug on a second transgenic HD mouse model, the N171-82Q mice. As in the original study, the drug was delivered in the drinking water. In the present study we tested larger groups of mice than in the original study. The results indicated that we were unable to replicate the significant behavioral effects of oral HDACi 4b treatment in the R6/2 mice. There were however, non-significant trends for the treated R6/2 mice to be less affected on some of the measures and there were instances of phenotype progression being delayed in these treated mice. In contrast, we did replicate the protection from striatal atrophy in the R6/2 mice. We also did not observe any beneficial effects of HDACi 4b treatment in the N171-82Q mice. Although the behavioral procedures were replicated and an automated activity assessment was added, there were several unexpected complications in terms of solubility of the drug, CAG repeat length differences and gender differences in progression of the phenotype that could have affected outcomes. Clearly more studies will have to be performed using other methods of delivery as well as assessing effects in more slowly progressing HD models to better evaluate the effects of this HDAC inhibitor.