The Sleeping beauty (SB) system is a non-viral DNA based vector that has been used to stably integrate therapeutic genes into disease models. Here we report the SB system is capable of stably integrating the ΔR4-R23/CTΔ micro-dystrophin gene into a conditionally immortal dystrophin deficient muscle cell-line, H2K SF1, a murine cell model for Duchenne muscular dystrophy. Genetically corrected H2K SF1 cells retained their myogenic properties in vitro. Moreover, upon transplantation ΔR4-R23/CTΔ micro-dystrophin expression was detected within mdx nu/nu mice. Our data suggests the SB system is an effective way of stably integrating therapeutic genes into myogenic cells.
Author Profile
Recent Posts
Satellite cells, normally quiescent underneath the myofibre basal lamina, are skeletal muscle stem cells responsible for postnatal muscle growth, repair and regeneration. Since their scarcity and small size have limited study on transverse muscle sections, techniques to isolate individual myofibres, bearing their attendant satellite cells, were developed. Studies on mouse myofibres have generated much information on satellite cells, but the limited availability and small size of human muscle biopsies have hampered equivalent studies of satellite cells on human myofibres. Here, we identified satellite cells on fragments of human and mouse myofibres, using a method applicable to small muscle biopsies.