Estimating Potential Incidence of MERS-CoV Associated with Hajj Pilgrims to Saudi Arabia, 2014

·

Between March and June 2014 the Kingdom of Saudi Arabia (KSA) had a large outbreak of MERS-CoV, renewing fears of a major outbreak during the Hajj this October. Using KSA Ministry of Health data, the MERS-CoV Scenario and Modeling Working Group forecast incidence under three scenarios. In the expected incidence scenario, we estimate 6.2 (95% Prediction Interval [PI]: 1–17) pilgrims will develop MERS-CoV symptoms during the Hajj, and 4.0 (95% PI: 0–12) foreign pilgrims will be infected but return home before developing symptoms. In the most pessimistic scenario, 47.6 (95% PI: 32–66) cases will develop symptoms during the Hajj, and 29.0 (95% PI: 17–43) will be infected but return home asymptomatic. Large numbers of MERS-CoV cases are unlikely to occur during the 2014 Hajj even under pessimistic assumptions, but careful monitoring is still needed to detect possible mass infection events and minimize introductions into other countries.  

Reverse Transcription Recombinase Polymerase Amplification Assay for the Detection of Middle East Respiratory Syndrome Coronavirus

·

The emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the eastern Mediterranean and imported cases to Europe has alerted public health authorities. Currently, detection of MERS-CoV in patient samples is done by real-time RT-PCR. Samples collected from suspected cases are sent to highly-equipped centralized laboratories for screening. A rapid point-of-care test is needed to allow more widespread mobile detection of the virus directly from patient material. In this study, we describe the development of a reverse transcription isothermal Recombinase Polymerase Amplification (RT-RPA) assay for the identification of MERS-CoV. A partial nucleocapsid gene RNA molecular standard of MERS-coronavirus was used to determine the assay sensitivity. The isothermal (42°C) MERS-CoV RT-RPA was as sensitive as real-time RT-PCR (10 RNA molecules), rapid (3-7 minutes) and mobile (using tubescanner weighing 1kg). The MERS-CoV RT-RPA showed cross-detection neither of any of the RNAs of several coronaviruses and respiratory viruses affecting humans nor of the human genome. The developed isothermal real-time RT-RPA is ideal for rapid mobile molecular MERS-CoV monitoring in acute patients and may also facilitate the search for the animal reservoir of MERS-CoV.