PLOS Currents Outbreaks

  • Log in
  • Home
  • Aims & Scope
  • Review Board
    • Reviewer Guide
  • Authors ↓
    • Author Guide
    • Figure Creation
    • Table Creation
    • Equation Creation
    • Reference Creation
    • Author FAQ
  • Resources
  • About
    • Guildelines for Comments

FLIRT-ing with Zika: A Web Application to Predict the Movement of Infected Travelers Validated Against the Current Zika Virus Epidemic

June 10, 2016 · Research Article

Introduction: Beginning in 2015, Zika virus rapidly spread throughout the Americas and has been linked to neurological and autoimmune diseases in adults and babies. Developing accurate tools to anticipate Zika spread is one of the first steps to mitigate further spread of the disease. When combined, air traffic data and network simulations can be used to create tools to predict where infectious disease may spread to and aid in the prevention of infectious diseases. Specific goals were to: 1) predict where travelers infected with the Zika Virus would arrive in the U.S.; and, 2) analyze and validate the open access web application’s (i.e., FLIRT) predictions using data collected after the prediction was made.

Method: FLIRT was built to predict the flow and likely destinations of infected travelers through the air travel network. FLIRT uses a database of flight schedules from over 800 airlines, and can display direct flight traffic and perform passenger simulations between selected airports. FLIRT was used to analyze flights departing from five selected airports in locations where sustained Zika Virus transmission was occurring. FLIRT’s predictions were validated against Zika cases arriving in the U.S. from selected airports during the selected time periods.  Kendall’s τ and Generalized Linear Models were computed for all permutations of FLIRT and case data to test the accuracy of FLIRT’s predictions.

Results: FLIRT was found to be predictive of the final destinations of infected travelers in the U.S. from areas with ongoing transmission of Zika in the Americas from 01 February 2016 – 01 to April 2016, and 11 January 2016 to 11 March 2016 time periods. MIA-FLL, JFK-EWR-LGA, and IAH were top ranked at-risk metro areas, and Florida, Texas and New York were top ranked states at-risk for the future time period analyzed (11 March 2016 – 11 June 2016). For the 11 January 2016 to 11 March 2016 time period, the region-aggregated model indicated 7.24 (95% CI 6.85 – 7.62) imported Zika cases per 100,000 passengers, and the state-aggregated model suggested 11.33 (95% CI 10.80 – 11.90) imported Zika cases per 100,000 passengers.

Discussion: The results from 01 February 2016 to 01 April 2016 and 11 January 2016 to 11 March 2016 time periods support that modeling air travel and passenger movement can be a powerful tool in predicting where infectious diseases will spread next. As FLIRT was shown to significantly predict distribution of Zika Virus cases in the past, there should be heightened biosurveillance and educational campaigns to medical service providers and the general public in these states, especially in the large metropolitan areas.  

A Three-Scale Network Model for the Early Growth Dynamics of 2014 West Africa Ebola Epidemic

November 13, 2014 · Research Article

Background: In mid-October 2014, the number of cases of the West Africa Ebola virus epidemic in Guinea, Sierra Leone and Liberia exceeded 9,000 cases. The early growth dynamics of the epidemic has been qualitatively different for each of the three countries. However, it is important to understand these disparate dynamics as trends of a single epidemic spread over regions with similar geographic and cultural aspects, with likely common parameters for transmission rates and reproduction number R0.

Methods: We combine a discrete, stochastic SEIR model with a three-scale community network model to demonstrate that the different regional trends may be explained by different community mixing rates. Heuristically, the effect of different community mixing rates may be understood as the observation that two individuals infected by the same chain of transmission are more likely to share the same contacts in a less-mixed community. Local saturation effects occur as the contacts of an infected individual are more likely to already be exposed by the same chain of transmission.

Results: The effects of community mixing, together with stochastic effects, can explain the qualitative difference in the growth of Ebola virus cases in each country, and why the probability of large outbreaks may have recently increased. An increase in the rate of Ebola cases in Guinea in late August, and a local fitting of the transient dynamics of the Ebola cases in Liberia, suggests that the epidemic in Liberia has been more severe, and the epidemic in Guinea is worsening, due to discrete seeding events as the epidemic spreads into new communities.

Conclusions: A relatively simple network model provides insight on the role of local effects such as saturation that would be difficult to otherwise quantify. Our results predict that exponential growth of an epidemic is driven by the exposure of new communities, underscoring the importance of limiting this spread.

Zika Collection

Vaccine Hesitancy Collection

PLOS Science Reddit AMA

HealthMap Zika

New Twitter

Tweets about "PLOSCurrentsOUT OR PLOS Currents Outbreaks"
  • Home
  • Terms of Use
  • Privacy Statement
  • About
  • Contact