Author Profile

Cécile Viboud

Affiliation: Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA

Recent Posts

Preliminary Estimates of Mortality and Years of Life Lost Associated with the 2009 A/H1N1 Pandemic in the US and Comparison with Past Influenza Seasons

The on-going debate about the health burden of the 2009 influenza pandemic and discussions about the usefulness of vaccine recommendations has been hampered by an absence of directly comparable measures of mortality impact. Here we set out to generate an “apples-to-apples” metric to compare pandemic and epidemic mortality. We estimated the mortality burden of the pandemic in the US using a methodology similar to that used to generate excess mortality burden for inter-pandemic influenza seasons. We also took into account the particularly young age distribution of deaths in the 2009 H1N1 pandemic, using the metric “Years of Life Lost” instead of numbers of deaths. Estimates are based on the timely pneumonia and influenza mortality surveillance data from 122 US cities, and the age distribution of laboratory-confirmed pandemic deaths, which has a mean of 37 years. We estimated that between 7,500 and 44,100 deaths are attributable to the A/H1N1 pandemic virus in the US during May-December 2009, and that between 334,000 and 1,973,000 years of life were lost. The range of years of life lost estimates includes in its lower part the impact of a typical influenza epidemic dominated by the more virulent A/H3N2 subtype, and the impact of the 1968 pandemic in its upper bound. We conclude that the 2009 A/H1N1 pandemic virus had a substantial health burden in the US over the first few months of circulation in terms of years of life lost, justifying the efforts to protect the population with vaccination programs. Analysis of historic records from three other pandemics over the last century suggests that the emerging pandemic virus will continue to circulate and cause excess mortality in unusually young populations for the next few years. Continuing surveillance for indicators of increased mortality is of key importance, as pandemics do not always cause the majority of associated deaths in the first season of circulation.

The early diversification of influenza A/H1N1pdm

Background Since its initial detection in April 2009, the A/H1N1pdm influenza virus has spread rapidly in humans, with over 5,700 human deaths. However, little is known about the evolutionary dynamics of H1N1pdm and its geographic and temporal diversification.

Methods Phylogenetic analysis was conducted upon the concatenated coding regions of whole-genome sequences from 290 H1N1pdm isolates sampled globally between April 1 – July 9, 2009, including relatively large samples from the US states of Wisconsin and New York.

Results At least 7 phylogenetically distinct viral clades have disseminated globally and co-circulated in localities that experienced multiple introductions of H1N1pdm. The epidemics in New York and Wisconsin were dominated by two different clades, both phylogenetically distinct from the viruses first identified in California and Mexico, suggesting an important role for founder effects in determining local viral population structures.

Conclusions Determining the global diversity of H1N1pdm is central to understanding the evolution and spatial spread of the current pandemic, and to predict its future impact on human populations. Our results indicate that H1N1pdm has already diversified into distinct viral lineages with defined spatial patterns.