PLOS Currents Outbreaks

  • Log in
  • Home
  • Aims & Scope
  • Review Board
    • Reviewer Guide
  • Authors ↓
    • Author Guide
    • Figure Creation
    • Table Creation
    • Equation Creation
    • Reference Creation
    • Author FAQ
  • Resources
  • About
    • Guildelines for Comments

Human Orthobunyavirus Infections, Tefé, Amazonas, Brazil

March 22, 2018 · Research Article

Introduction: Several orthobunyaviruses are important arthropod-borne pathogens, responsible for a variety of diseases in humans, from acute febrile illness to encephalitis.

Methods: We collected serum samples from a series of dengue suspected cases in Tefé, a mid-size city located in the interior of the Amazonas state, Brazil. Viral RNA extraction was performed, and specimens were tested for dengue virus using RT-PCR. Thirty dengue negative samples were further tested for Mayaro virus (MAYV) and Oropouche virus (OROV) using an RT-qPCR protocol previously described. Positive samples were characterized by MegaBLAST analysis over the entire nucleotide collection of the main public databases, and also by maximum likelihood phylogenetic reconstruction of the S genome segment.

Results: We detected nine OROV or OROV-like positive cases among 30 patients reporting fever and headache, as the most common symptoms. The closest nucleotide sequence returned from the MegaBLAST analysis belongs to an OROV isolated in Peru 2008. Moreover, all Tefé samples grouped in the same clade with the OROV reference sequence and other closely-related OROV-like viruses.

Discussion: Dengue viruses are still the most important arbovirus worldwide, causing hundreds of millions of infections every year. Nonetheless, other arboviruses like chikungunya virus, Zika virus, and yellow fever virus have emerged in the last few years and are now a public health concern in several countries. OROV is believed to have caused more than 500,000 febrile infections in Brazil over recent decades. Therefore, the results described in this study strengthen that this arbovirus, and its closely-related recombinants, should be under continuous surveillance, at least in the endemic countries of Latin America.

Enhancing Ebola Virus Disease Surveillance and Prevention in Counties Without Confirmed Cases in Rural Liberia: Experiences from Sinoe County During the Flare-up in Monrovia, April to June, 2016

November 9, 2017 · Research Article

Introduction: During the flare-ups of Ebola virus disease (EVD) in Liberia, Sinoe County reactivated the multi-sectorial EVD control strategy in order to be ready to respond to the eventual reintroduction of cases. This paper describes the impacts of the interventions implemented in Sinoe County during the last flare-up in Monrovia, from April 1 to June 9, 2016, using the resources provided during the original outbreak that ended a year ago.

Methods: We conducted a descriptive study to describe the key interventions implemented in Sinoe County, the capacity available, the implications for the reactivation of the multi-sectoral EVD control strategy, and the results of the same. We also conducted a cross-sectional study to analyze the impact of the interventions on the surveillance and on infection prevention and control (IPC).

Results: The attrition of the staff trained during the original outbreak was low, and most of the supplies, equipment, and infrastructure from the original outbreak remained available. With an additional USD 1755, improvements were observed in the IPC indicators of triage, which increased from a mean of 60% at the first assessment to 77% (P=0.002). Additionally, personnel/staff training improved from 78% to 89% (P=0.04). The percentage of EVD death alerts per expected deaths investigated increased from 26% to 63% (P<0.0001).

Discussion: The low attrition of the trained staff and the availability of most supplies, equipment, and infrastructure made the reactivation of the multi-sectoral EVD control strategy fast and affordable. The improvement of the EVD surveillance was possibly affected by the community engagement activities, awareness and mentoring of the health workers, and improved availability of clinicians in the facilities during the flare-up. The community engagement may contribute to the report of community-based events, specifically community deaths. The mentoring of the staff during the supportive supervisions also contributed to improve the IPC indicators.

Assessing Measles Transmission in the United States Following a Large Outbreak in California

May 7, 2015 · Research Article

The recent increase in measles cases in California may raise questions regarding the continuing success of measles control. To determine whether the dynamics of measles is qualitatively different in comparison to previous years, we assess whether the 2014-2015 measles outbreak associated with an Anaheim theme park is consistent with subcriticality by calculating maximum-likelihood estimates for the effective reproduction number given this year’s outbreak, using the Galton-Watson branching process model. We find that the dynamics after the initial transmission event are consistent with prior transmission, but does not exclude the possibility that the effective reproduction number has increased.

Distinguishing Between Reservoir Exposure and Human-to-Human Transmission for Emerging Pathogens Using Case Onset Data

March 7, 2014 · Research Article

Pathogens such as MERS-CoV, influenza A/H5N1 and influenza A/H7N9 are currently generating sporadic clusters of spillover human cases from animal reservoirs. The lack of a clear human epidemic suggests that the basic reproductive number R0 is below or very close to one for all three infections. However, robust cluster-based estimates for low R0 values are still desirable so as to help prioritise scarce resources between different emerging infections and to detect significant changes between clusters and over time. We developed an inferential transmission model capable of distinguishing the signal of human-to-human transmission from the background noise of direct spillover transmission (e.g. from markets or farms). By simulation, we showed that our approach could obtain unbiased estimates of R0, even when the temporal trend in spillover exposure was not fully known, so long as the serial interval of the infection and the timing of a sudden drop in spillover exposure were known (e.g. day of market closure). Applying our method to data from the three largest outbreaks of influenza A/H7N9 outbreak in China in 2013, we found evidence that human-to-human transmission accounted for 13% (95% credible interval 1%–32%) of cases overall. We estimated R0 for the three clusters to be: 0.19 in Shanghai (0.01-0.49), 0.29 in Jiangsu (0.03-0.73); and 0.03 in Zhejiang (0.00-0.22). If a reliable temporal trend for the spillover hazard could be estimated, for example by implementing widespread routine sampling in sentinel markets, it should be possible to estimate sub-critical values of R0 even more accurately. Should a similar strain emerge with R0>1, these methods could give a real-time indication that sustained transmission is occurring with well-characterised uncertainty.

Zika Collection

Vaccine Hesitancy Collection

PLOS Science Reddit AMA

HealthMap Zika

New Twitter

Tweets about "PLOSCurrentsOUT OR PLOS Currents Outbreaks"
  • Home
  • Terms of Use
  • Privacy Statement
  • About
  • Contact