Since the ever-increasing availability of phylogenetic informative data, the last decade has seen an upsurge of ecological studies incorporating information on evolutionary relationships among species. However, detailed species-level phylogenies are still lacking for many large groups and regions, which are necessary for comprehensive large-scale eco-phylogenetic analyses. Here, we provide a dataset of 100 dated phylogenetic trees for all European tetrapods based on a mixture of supermatrix and supertree approaches. Phylogenetic inference was performed separately for each of the main Tetrapoda groups of Europe except mammals (i.e. amphibians, birds, squamates and turtles) by means of maximum likelihood (ML) analyses of supermatrix applying a tree constraint at the family (amphibians and squamates) or order (birds and turtles) levels based on consensus knowledge. For each group, we inferred 100 ML trees to be able to provide a phylogenetic dataset that accounts for phylogenetic uncertainty, and assessed node support with bootstrap analyses. Each tree was dated using penalized-likelihood and fossil calibration. The trees obtained were well-supported by existing knowledge and previous phylogenetic studies. For mammals, we modified the most complete supertree dataset available on the literature to include a recent update of the Carnivora clade. As a final step, we merged the phylogenetic trees of all groups to obtain a set of 100 phylogenetic trees for all European Tetrapoda species for which data was available (91%). We provide this phylogenetic dataset (100 chronograms) for the purpose of comparative analyses, macro-ecological or community ecology studies aiming to incorporate phylogenetic information while accounting for phylogenetic uncertainty.
More than 2,500 species of copepods (Class Maxillopoda; Subclass Copepoda) occur in the marine planktonic environment. The exceptional morphological conservation of the group, with numerous sibling species groups, makes the identification of species challenging, even for expert taxonomists. Molecular approaches to species identification have allowed rapid detection, discrimination, and identification of species based on DNA sequencing of single specimens and environmental samples. Despite the recent development of diverse genetic and genomic markers, the barcode region of the mitochondrial cytochrome c oxidase subunit I (COI) gene remains a useful and – in some cases – unequaled diagnostic character for species-level identification of copepods. This study reports 800 new barcode sequences for 63 copepod species not included in any previous study and examines the reliability and resolution of diverse statistical approaches to species identification based upon a dataset of 1,381 barcode sequences for 195 copepod species. We explore the impact of missing data (i.e., species not represented in the barcode database) on the accuracy and reliability of species identifications. Among the tested approaches, the best close match analysis resulted in accurate identification of all individuals to species, with no errors (false positives), and out-performed automated tree-based or BLAST based analyses. This comparative analysis yields new understanding of the strengths and weaknesses of DNA barcoding and confirms the value of DNA barcodes for species identification of copepods, including both individual specimens and bulk samples. Continued integrative morphological-molecular taxonomic analysis is needed to produce a taxonomically-comprehensive database of barcode sequences for all species of marine copepods.
As phylogenetic data becomes increasingly available, along with associated data on species’ genomes, traits, and geographic distributions, the need to ensure data availability and reuse become more and more acute. In this paper, we provide ten “simple rules” that we view as best practices for data sharing in phylogenetic research. These rules will help lead towards a future phylogenetics where data can easily be archived, shared, reused, and repurposed across a wide variety of projects.
Our knowledge of the avian tree of life remains uncertain, particularly at deeper levels due to the rapid diversification early in their evolutionary history. They are the most abundant land vertebrate on the planet and have been of great historical interest to systematists. Birds are also economically and ecologically important and as a result are intensively studied, yet despite their importance and interest to humans around 13% of taxa currently on the endangered species list perhaps as a result of human activity. Despite all this no comprehensive phylogeny that includes both extinct and extant species currently exists. Here we present a species-level supertree, constructed using the Matrix Representation with Parsimony method, of Aves containing approximately two thirds of all species from nearly 1000 source phylogenies with a broad taxonomic coverage. The source data for the tree were collected and processed according to a strict protocol to ensure robust and accurate data handling. The resulting tree topology is largely consistent with molecular hypotheses of avian phylogeny. We identify areas that are in broad agreement with current views on avian systematics and also those that require further work. We also highlight the need for leaf-based support measures to enable the identification of rogue taxa in supertrees. This is a first attempt at a supertree of both extinct and extant birds, it is not intended to be utilised in an overhaul of avian systematics or as a basis for taxonomic re-classification but provides a strong basis on which to base further studies on macroevolution, conservation, biodiversity, comparative biology and character evolution, in particular the inclusion of fossils will allow the study of bird evolution and diversification throughout deep time.
Background
Understanding the evolutionary relationships of all eukaryotes on Earth remains a paramount goal of modern biology, yet analyzing homologous sequences across 1.8 billion years of eukaryotic evolution is challenging. Many existing tools for identifying gene orthologs are inadequate when working with heterogeneous rates of evolution and endosymbiotic/lateral gene transfer. Moreover, genomic-scale sequencing, which was once the domain of large sequencing centers, has advanced to the point where small laboratories can now generate the data needed for phylogenomic studies. This has opened the door for increased taxonomic sampling as individual research groups have the ability to conduct genome-scale projects on their favorite non-model organism.
Results
Here we present some of the tools developed, and insights gained, as we created a pipeline that combines data-mining from public databases and our own transcriptome data to study the eukaryotic tree of life. The first steps of a phylogenomic pipeline involve choosing taxa and loci, and making decisions about how to handle alleles, paralogs and non-overlapping sequences. Next, orthologs are aligned for analyses including gene tree reconstruction and concatenation for supermatrix approaches. To build our pipeline, we created scripts written in Python that integrate third-party tools with custom methods. As a test case, we present the placement of five amoebae on the eukaryotic tree of life based on analyses of transcriptome data. Our scripts are available on GitHub and may be used as-is for automated analyses of large scale phylogenomics, or adapted for use in other types of studies.
Conclusion
Analyses on the scale of all eukaryotes present challenges not necessarily found in studies of more closely related organisms. Our approach will be of relevance to others for whom existing third-party tools fail to fully answer desired phylogenetic questions.
The phenotype represents a critical interface between the genome and the environment in which organisms live and evolve. Phenotypic characters also are a rich source of biodiversity data for tree building, and they enable scientists to reconstruct the evolutionary history of organisms, including most fossil taxa, for which genetic data are unavailable. Therefore, phenotypic data are necessary for building a comprehensive Tree of Life. In contrast to recent advances in molecular sequencing, which has become faster and cheaper through recent technological advances, phenotypic data collection remains often prohibitively slow and expensive. The next-generation phenomics project is a collaborative, multidisciplinary effort to leverage advances in image analysis, crowdsourcing, and natural language processing to develop and implement novel approaches for discovering and scoring the phenome, the collection of phentotypic characters for a species. This research represents a new approach to data collection that has the potential to transform phylogenetics research and to enable rapid advances in constructing the Tree of Life. Our goal is to assemble large phenomic datasets built using new methods and to provide the public and scientific community with tools for phenomic data assembly that will enable rapid and automated study of phenotypes across the Tree of Life.
We describe our efforts to develop a software package, Arbor, that will enable scientific research in all aspects of comparative biology. This software will enable developmental biologists, geneticists, ecologists, geographers, paleobiologists, educators, and students to analyze diverse types of comparative data at multiple phylogenetic and spatiotemporal scales using an intuitive visual interface. Arbor’s user-defined workflows will be exported and shared so that entire analyses can be quickly replicated with new or updated data. Arbor will also be designed to easily and seamlessly expand to include novel analytical tools as they are developed. Here we describe the core components of Arbor, as well as provide details of one proposed test case to illustrate the software’s key functionality.
The tree of life of fishes is in a state of flux because we still lack a comprehensive phylogeny that includes all major groups. The situation is most critical for a large clade of spiny-finned fishes, traditionally referred to as percomorphs, whose uncertain relationships have plagued ichthyologists for over a century. Most of what we know about the higher-level relationships among fish lineages has been based on morphology, but rapid influx of molecular studies is changing many established systematic concepts. We report a comprehensive molecular phylogeny for bony fishes that includes representatives of all major lineages. DNA sequence data for 21 molecular markers (one mitochondrial and 20 nuclear genes) were collected for 1410 bony fish taxa, plus four tetrapod species and two chondrichthyan outgroups (total 1416 terminals). Bony fish diversity is represented by 1093 genera, 369 families, and all traditionally recognized orders. The maximum likelihood tree provides unprecedented resolution and high bootstrap support for most backbone nodes, defining for the first time a global phylogeny of fishes. The general structure of the tree is in agreement with expectations from previous morphological and molecular studies, but significant new clades arise. Most interestingly, the high degree of uncertainty among percomorphs is now resolved into nine well-supported supraordinal groups. The order Perciformes, considered by many a polyphyletic taxonomic waste basket, is defined for the first time as a monophyletic group in the global phylogeny. A new classification that reflects our phylogenetic hypothesis is proposed to facilitate communication about the newly found structure of the tree of life of fishes. Finally, the molecular phylogeny is calibrated using 60 fossil constraints to produce a comprehensive time tree. The new time-calibrated phylogeny will provide the basis for and stimulate new comparative studies to better understand the evolution of the amazing diversity of fishes.
Over half of all vertebrates are “fishes”, which exhibit enormous diversity in morphology, physiology, behavior, reproductive biology, and ecology. Investigation of fundamental areas of vertebrate biology depend critically on a robust phylogeny of fishes, yet evolutionary relationships among the major actinopterygian and sarcopterygian lineages have not been conclusively resolved. Although a consensus phylogeny of teleosts has been emerging recently, it has been based on analyses of various subsets of actinopterygian taxa, but not on a full sample of all bony fishes. Here we conducted a comprehensive phylogenetic study on a broad taxonomic sample of 61 actinopterygian and sarcopterygian lineages (with a chondrichthyan outgroup) using a molecular data set of 21 independent loci. These data yielded a resolved phylogenetic hypothesis for extant Osteichthyes, including 1) reciprocally monophyletic Sarcopterygii and Actinopterygii, as currently understood, with polypteriforms as the first diverging lineage within Actinopterygii; 2) a monophyletic group containing gars and bowfin (= Holostei) as sister group to teleosts; and 3) the earliest diverging lineage among teleosts being Elopomorpha, rather than Osteoglossomorpha. Relaxed-clock dating analysis employing a set of 24 newly applied fossil calibrations reveals divergence times that are more consistent with paleontological estimates than previous studies. Establishing a new phylogenetic pattern with accurate divergence dates for bony fishes illustrates several areas where the fossil record is incomplete and provides critical new insights on diversification of this important vertebrate group.
Multicopper blue proteins, composed of several repetitive copper-binding domains similar to one-domain cupredoxin-like proteins, were found in almost all organisms. They are classified into the three different groups, based on their two-, three- or six-domain organization. We found orthologs of chordate six-domain copper-binding proteins in animals, plants, bacteria and archea. The phylogenetic analysis of 183 multicopper blue proteins and their copper-binding sites comparison make us think that all the modern six-domain blue proteins have originated from the common ancestral six-domain protein in the process of gene duplication and copper-binding sites loss as a result of amino acid substitutions.